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Some disaster survivors who had previously 

received support through volunteering 

participated in volunteer activities for people 

affected by subsequent disasters, which was 

observed after the 2011 Great East Japan 

Earthquake and the 2016 Kumamoto Earthquake 

in Japan. This chain of support, known as “pay-it-

forward,” is expected to expand social networks 

and bring about small-world property (i.e., 

networks with high clustering and short path 

length between people), as suggested by Atsumi [1]. 

Most studies have focused on the effects of pay-it-

forward on individuals (i.e., psychological 

perspective), but studies have insufficiently 

determined its effects on the whole society or social 

networks (i.e., sociological perspective). This study 

aims to investigate the dynamic effects of pay-it-

forward on network properties. We proposed a 

network formation model considering pay-it-

forward during disasters and conducted numerical 

simulations. The results showed that pay-it-

forward led to small-world property and higher 

social welfare in the long term, because it 

eliminated the disparity in ties between people (in 

particular, it reduced the number of people with 

fewer ties), which accelerated network formation 

during the period without disasters. This result was 

more pronounced in societies with a larger 

disparity in ties. From a sociological perspective, 

our findings imply the significance of pay-it-

forward volunteering and volunteer organizations 

that promote such activities. 

Keywords: small world, volunteers, upstream 

reciprocity, network formation 

1. Introduction  

The various volunteer activities are implemented in 

times of disaster, among which pay-it-forward (PF) 

has been attracting attention from psychological and 
sociological perspectives. Pay-it-forward refers to the 

chain of actions where person A supports person B in 

a disaster area, and B supports person C in a 

subsequent disaster area (Fig. 1) [1]. This kind of 

return of favor to another person (person C for B), 

rather than directly to the one who helped (person A 

for B), is also known as “upstream reciprocity” in 

“indirect reciprocity” [2]. Pay-it-forward was 

observed in past disasters such as the 2011 Great East 

Japan Earthquake and the 2016 Kumamoto 

Earthquake in Japan [1,3]. 

Two types of effects of pay-it-forward have been 

pointed out previously [1]: 1. the psychological effects 

on past disaster relief recipients (person B in Fig. 1) 

and 2. the sociological effects on the entire society. 

Much of the research is on the former, which mainly 

studied the feeling of indebtedness of past disaster 

survivors [1]. Many studies have shown through 

interviews that people feel a sense of indebtedness 

when they receive disaster relief [1,4]. Some empirical 

studies tested that the debt from receiving assistance 

leads to subsequent disaster volunteering [5,6] and 

other altruistic behaviors [7]; others tested that pay-it-

forward reduces the indebtedness of relief providers 

[1,4]. 

In terms of sociological effects, Atsumi [1] suggests 

that an increase in near-random ties, such as pay-it-

forward, may bring small-world property to social 

networks, as shown by Watts and Strogatz [8]. 

However, research on the sociological effects of pay-

it-forward has mainly focused on its effects under 

static social networks. The examples include 

theoretical studies examining the effects of upstream 

reciprocity on the evolution of cooperative behavior 

using evolutionary games on static networks [9,10,11] 

and statistical studies investigating the 
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Fig. 1. Example of pay-it-forward 
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interdependence between pay-it-forward and 

cooperative behavior in a static network [12]. 

However, to the best of our knowledge, there are no 

studies on the effect of pay-it-forward on the network 

properties in dynamic network formation processes. 

This paper aims to examine the dynamic effects of 

pay-it-forward on network properties. To this end, we 

formulate a social network model that considers pay-

it-forward and conduct a numerical simulation. We 

capture the pay-it-forward effects in terms of small-

world property. Watts and Strogatz [8] described the 

small-world property as an “idea that we are all 

connected to each other via very short paths, typically 

encompassing only a handful of intermediaries,” and 

illustrated it with cluster coefficients and average 

distance lengths. It has been empirically shown that 

small-world property realizes a society in which 

information and knowledge transfer is faster, trust is 

easily formed, innovation is more likely to emerge, 

and productivity is higher [13,14,15]. The small-world 

property likely brings significant social benefits. This 

study examines whether pay-it-forward brings small-

world property in networks (in terms of cluster 

coefficient and distance length) and, if so, in what kind 

of mechanism it brings. 

 This study contributes to evaluating pay-it-forward 

from the sociological perspective by showing the long-

term effects of pay-it-forward on social networks. 
This evaluation implies the significance of the work of 

volunteer organizations (e.g., non-profit organizations 

(NPOs)) that promote pay-it-forward volunteer 

activities (i.e., coordinate the participation of affected 

people of past disasters in volunteer efforts for other 

disasters) [1] and the rationale for promoting their 

work. 

2. Method: Network Formation Model 

Considering Pay-It-Forward  

2.1. Utility Function 

Relationships among individuals (hereafter 

“players”) are represented by graphs. Let 𝑁 =
{1, … , 𝑛} , 𝑛 > 2  be the players of the network. A 

node represents a player, and a link represents an 

interaction between players. Let the network 𝑔 be the 

set of links between players in 𝑁. The links between 

players  𝑖  and 𝑗  are denoted by 𝑖𝑗 , where 𝑖𝑗 ∈ 𝑔 

indicates that players 𝑖  and 𝑗  interact directly in 

network 𝑔  and 𝑖𝑗 ∉ 𝑔  indicates that there is no 

interaction. Also, 𝑔 + 𝑖𝑗 = 𝑔 ∪ {𝑖𝑗}  indicates that 

link 𝑖𝑗  has been added to network 𝑔 . Conversely, 

𝑔 − 𝑖𝑗 = 𝑔 ∖ {𝑖𝑗}  indicates that link 𝑖𝑗  has been 

removed from network 𝑔． 

Neighbors of player 𝑖  can be denoted by all 𝑗 

such that 𝑖𝑗 ∈ 𝑔. We assume that player 𝑖 interacts 

with his neighbors and has a certain level of social 

interaction, such as exchanges of goods and 

information, transactions, and so on. The set of 

neighbors of player 𝑖  can be denoted by 𝑁𝑖(𝑔) =
{𝑗 ∈ 𝑁|𝑖𝑗 ∈ 𝑔}. The degree of player 𝑖 is the number 

of neighbors of 𝑖 , which is defined as 𝑑𝑖(𝑔) =
|𝑁𝑖(𝑔)|.  

The utility  𝑢𝑖(𝑔)  of player 𝑖  in network 𝑔  is 

defined as follows, following Kotani and Yokomatsu 

[16]. 

𝑢𝑖(𝑔) = ∑ 𝑏(𝑑𝑗) − 𝑐(𝑑𝑖) ∙ 𝑑𝑖𝑗∈𝑁𝑖(𝑔) ,  () 

where 

𝑏(𝑑𝑗) = 𝑑𝑗 − 1,  () 

𝑐(𝑑𝑖) = 𝑐̅ ∙ 𝑑𝑖 .  () 

The first term, 𝑏(𝑑𝑗), indicates the benefit obtained 

from neighbor 𝑗, and is a monotonically increasing 

function with respect to 𝑑𝑗 . This indicates that the 

larger the degree of neighbor 𝑗 is, the greater the 

amount of resources and information obtained through 

interaction with 𝑗, and the greater the utility. On the 

other hand, the second term 𝑐(𝑑𝑖) , where 𝑐̅  is a 

constant, represents the interaction cost per player in 

the neighbors, which is a monotonically increasing 

function with respect to the degree of player 𝑖 , 𝑑𝑖 . 

This indicates that as the degree increases, it becomes 

more difficult for 𝑖 to adjust his/her schedule and the 

interaction cost increases. 

2.2. Network Formation Process in Peaceful 

Times 

The network formation process is based on the 

dynamic model proposed by Jackson and Watts [17], 

which has been used in many papers. Each player is 

assumed to have the following bounded rationality. 

1. Not all players react immediately to their 

environment (the inertia hypothesis) 

2. Each player reacts myopically when they react 

(the myopic hypothesis) 

3. Each player randomly changes his/her strategy 

with a small probability (the error/mutation 

hypothesis) 

The third, error/mutation, is an external factor 

independent of each player and represents a change in 

interaction relationships due to unexpected encounters, 

unemployment, illness, taking up a new hobby, and so 

on. The error/mutation causes the network to continue 

to change. Thus, the process allows us to identify the 

most robust or easy-to-reach networks in the long run. 

The dynamic process in period 𝑡  consists of the 

following four steps (steps 1 to 4). Let 𝑔𝑡 denote the 

network at the beginning of step 1 in period 𝑡 (𝑡 =
{1, … , 𝑇} , 𝑇 > 2). 

Step 1. A pair of players is randomly selected along 

with a constant probability distribution {𝜋𝑖𝑗} 

(𝜋𝑖𝑗 > 0 for all 𝑖𝑗). 
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Step 2. The remaining players (i.e., all players other 

than players  𝑖  and 𝑗  selected in step 1) do not 

react to the environment. That is, their links do not 

change (the inertia hypothesis). 

Step 3. Under the myopic hypothesis, players 𝑖 and 𝑗 

selected in step 1 decide whether to form or delete 

link 𝑖𝑗, following steps 3-1 and 3-2 below. Steps 3-

1 and 3-2 are called “two-sided link formation,” 

which means that forming a link requires the 

agreement of both players while severing a link can 

be done unilaterally [17]. Players 𝑖 and 𝑗 make 

their decision based on the assumption that all links 

except link 𝑖𝑗  is in the same state as at the 

beginning of the period.  

Step 3-1. In the case of 𝑖𝑗 ∉ 𝑔𝑡  

A link 𝑖𝑗 is formed if the utility of at least one of 

the players strictly increases and the utility of the 

other player does not decrease. Otherwise, they do 

not form it. 

Step 3-2. In the case of 𝑖𝑗 ∈ 𝑔𝑡 

   A link 𝑖𝑗 is disconnected if deleting link 𝑖𝑗 will 

strictly increase the utility of at least one of the 

players. Otherwise, they do not disconnect. 

Step 4. Error/mutation occurs with a small probability 

𝜀 (0 < 𝜀 < 1) . That is, with probability 𝜀 , the 

decision of step 3 is reversed; with probability 1 −
𝜀 , the decision remains the same. This process 

generates 𝑔𝑡
1
. 

The above four steps can be summarized as follows. 

<In the case of 𝑖𝑗 ∉ 𝑔𝑡 > 

If 𝑢𝑖(𝑔𝑡 + 𝑖𝑗) ≥ 𝑢𝑖(𝑔𝑡)  and 𝑢𝑗(𝑔𝑡 + 𝑖𝑗) ≥

𝑢𝑗(𝑔𝑡)  with one inequality strict, then 𝑔𝑡
1

=

𝑔𝑡 + 𝑖𝑗  with probability 1 − 𝜀  and 𝑔𝑡
1

= 𝑔𝑡 

with probability 𝜀 . Otherwise, 𝑔𝑡
1

= 𝑔𝑡  with 

probability 1 − 𝜀  and 𝑔𝑡
1

= 𝑔𝑡 + 𝑖𝑗  with 

probability 𝜀. 

<In the case of 𝑖𝑗 ∈ 𝑔𝑡 > 

If 𝑢𝑖(𝑔𝑡 − 𝑖𝑗) > 𝑢𝑖(𝑔𝑡)  and/or 𝑢𝑗(𝑔𝑡 − 𝑖𝑗) >

𝑢𝑗(𝑔𝑡) , then 𝑔𝑡
1

= 𝑔𝑡 − 𝑖𝑗  with probability 

1 − 𝜀  and 𝑔𝑡
1

= 𝑔𝑡  with probability 𝜀 . 

Otherwise, 𝑔𝑡
1

= 𝑔𝑡  with probability 1 − 𝜀 

and 𝑔𝑡
1

= 𝑔𝑡 − 𝑖𝑗 with probability 𝜀. 

Through this process, the network 𝑔𝑡
1
 at the end 

of period 𝑡 is determined. This network becomes the 

network 𝑔𝑡+1 at the beginning of period 𝑡 + 1, and 

steps 1 to 4 are repeated in period 𝑡 + 1. 

2.3. Network Formation Process Considering 

Pay-It-Forward at the Time of Disaster 

To model pay-it-forward, we assume that a disaster 

occurs with a constant probability 𝜂 (0 < 𝜂 < 1) in 

the network formation process every period. If a 

disaster occurs, support activities such as volunteering 

may occur and new links may be formed. Let 𝑘 be the 

number of times a new link is formed by pay-it-

forward by the beginning of period 𝑡 (𝑘 = 0, 1, 2,
⋯ ). Let 𝑝𝑘 be the support provider (hereafter, simply 

“provider”) in the pay-it-forward at event number 𝑘 

and 𝑟𝑘  be the recipient of support, and assume that 

the recipient may become a provider in the subsequent 

disasters and help an affected player. In other words, 

𝑟𝑘 = 𝑝𝑘+1 . Under these assumptions, the network 

formation process during a disaster is taken in the fifth 

step after the fourth step in peaceful times. 

Step 5. Suppose that a disaster occurs with a certain 

probability 𝜂. If a disaster occurs, the following 

steps 5-1 and 5-2 determine whether or not pay-it-

forward occurs. If no disaster occurs (with 

probability 1 − 𝜂), step 5 ends. 

Step 5-1a. In the case of 𝑘 = 0 

Of the pair 𝑖𝑗 selected in step 1, one of the players 

is affected by the disaster with equal probability for 

each player and is denoted by 𝑟′ as the player who 

may receive support. The other player of pair 𝑖𝑗 is 

not affected by the disaster, who is denoted by 𝑝′ 

as the player may support player 𝑟′．  

Step 5-1b. In the case of 𝑘 ≥ 1 

Let 𝑟𝑘 (i.e., the player who was the recipient in the 

most recent support) be the player 𝑝′who is likely 

to support in the current period (𝑝′ = 𝑟𝑘). Then, 

let 𝑟′ be the player who may be supported by one 

of the pair 𝑖𝑗  selected in step 1, with equal 

probability that one of the players is affected by a 

disaster. Note that if 𝑝′(= 𝑟𝑘) = 𝑟′ , then we 

redefine the other player of 𝑖𝑗 as 𝑟′. 

Step 5-2. If the degree of the player 𝑝′ who may 

support is zero, there is no change in the network. 

If the degree of 𝑝′ is not zero, and if there is no 

link between 𝑝′  and 𝑟′ , then with a probability 

1 − 𝜀, player 𝑝′will provide support for player 𝑟′, 

from which a communication occurs and a new link 

is formed. When a new link is formed, 𝑝𝑘+1 =
𝑝′ and  𝑟𝑘+1 = 𝑟′. Then, player 𝑝′ selects one of 

his/her neighbors 𝑜 with equal probability among 

the neighbors and delete link 𝑝′𝑜.  

The above process is summarized as follows.  

𝑔𝑡
2

= 𝑔𝑡
1

happens with probability 1 − 𝜂 . 

Otherwise, the following process happens with 

probability 𝜂. 

<In the case of 𝑑𝑝′ ≠ 0> 

・In the case of 𝑝′𝑟′ ∉ 𝑔𝑡
1
  

𝑔𝑡
2

= 𝑔𝑡
1

+ 𝑝′𝑟′ − 𝑝′𝑜  , 𝑝′ = 𝑝𝑘+1 , 𝑟′ =

𝑟𝑘+1  with probability 1 − 𝜀  and 𝑔𝑡
2

= 𝑔𝑡
1
 

with probability 𝜀.  

・In the case of 𝑝′𝑟′ ∈ 𝑔𝑡
1
 

    𝑔𝑡
2

= 𝑔𝑡
1
 

<In the case of 𝑑𝑝′ = 0 > 

    𝑔𝑡
2

= 𝑔𝑡
1
 

Through this process, the network 𝑔𝑡
2
 at the end 

of period 𝑡 is determined. This network becomes the 

network 𝑔𝑡+1  at the beginning of period 𝑡 + 1. In 

period 𝑡 + 1 , if a disaster occurs, steps 1 to 5 are 

repeated.  
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An example of pay-it-forward in this algorithm is 

shown below (Fig. 2).  Suppose that when 𝑘 = 0 

(i.e., no pay-it-forward has ever occurred in the past), 

player 𝑖 as a provider form a link 𝑖𝑗 with player 𝑗 

as a recipient (𝑝1 = 𝑖  and 𝑟1 = 𝑗 ) (link 𝑖𝑗  in the 

network in the middle of Fig. 2). In this case, the 

provider 𝑖 is assumed to randomly disconnect one of 

the already existing links (link 𝑖𝑜 in the network in 

the middle of Fig. 2). Then, when 𝑘 = 1, player 𝑗, 

who was a recipient in the pay-it-forward when 𝑘 =
0, becomes a provider (𝑝2 = 𝑟1 = 𝑗) and connects a 

new link (link 𝑗𝑚 in the network on the right-hand 

side of Fig. 2). Note that Fig. 2 omits the network 

formation process of peaceful time between 𝑘 = 0 

and 𝑘 = 1; however, in the algorithm, as the network 

formation process of peaceful time exists, player 𝑗 

may delete a link with other than player 𝑖 if player 𝑗 

has more than one link when 𝑘 = 1. 

There are two reasons why we assume that provider 

𝑝𝑘 deletes a link at random among the neighbors in 

step 5-2. The first reason is that we assume that when 

helping an affected player, the provider has to reduce 

the physical and temporal resources to interact with 

existing neighbors, which leads him to delete an 

existing link. The second reason is to make a clear 

comparative analysis of the effects of pay-it-forward. 

If the existing links are not deleted, the degree of the 

provider 𝑝𝑘  will necessarily increase after the 

support provision, and this will obviously increase the 

total number of links in the network. In contrast, our 

algorithm keeps the degree of the provider 𝑝𝑘 same 

before and after the support. It prevents us from 

obtaining the obvious result and allows us to 

investigate the true long-term effect of pay-it-forward. 

2.4. Parameter Settings 

We set the parameters as follows, largely following 

Kotani and Yokomatsu [16]. The number of players is 

𝑛 = 20 , and the network formation process is 

performed for 𝑇 = 3000  periods. The selection 

probability of players in step 1 is assumed to be 

 
1  Components are maximal subnetworks such that 

every pair of nodes in the subnetwork is connected by 

a sequence of links (M. O. Jackson, “Social and 

uniformly distributed (𝜋𝑖𝑗 =
1

(
𝑛
2

)
). The interaction cost 

in the utility function is 𝑐̅ = 0.2. The probability of 

error is 𝜀 = 0.05 , and the probability of disaster 

occurrence is 𝜂 = 0.1. The initial network is an empty 

network where all players have no links (𝑔1 = ∅). 

We run a Monte Carlo simulation with 1000 iterations 

and analyzed the resulting Monte Carlo average. 

2.5. Evaluation Indicators 

We use the average clustering coefficient (ACC) 

and average of inverse distance (AID) as indicators of 

the small-world property. ACC is defined as the 

average of the clustering coefficient: 𝐶𝑙𝑖(𝑔), which 

indicates the proportion of links formed among 

player’s neighbors [8]. According to Coleman [18], 

the cluster is important because, for example, it 

reduces betrayal due to common acquaintances. 

𝐴𝐶𝐶 =
∑ 𝐶𝑙𝑖(𝑔)𝑖∈𝑁

𝑛
,  () 

where 

𝐶𝑙𝑖(𝑔) =
＃{𝑗𝑘∈𝑔|𝑗≠𝑘,𝑗∈𝑁𝑖(𝑔),𝑘∈𝑁𝑖(𝑔)}

＃{𝑗𝑘|𝑗≠𝑘,𝑗∈𝑁𝑖(𝑔),𝑘∈𝑁𝑖(𝑔)}
.  () 

AID measures the path length of a network, and it is 

especially suitable when there is more than one 

component1. It can be defined as follows [19,20]. 

𝐴𝐼𝐷 =
∑ 𝐿𝑖(𝑔)𝑖∈𝑁

𝑛
,  () 

where 

𝐿𝑖(𝑔) =
1

𝑛−1
∑

1

𝑙𝑖𝑗
𝑗≠𝑖 .  () 

𝑙𝑖𝑗  is the path length from player 𝑖  to 𝑗 , i.e., the 

number of links in the shortest path. 𝑙𝑖𝑗 = ∞ if there 

is no path between 𝑖 and 𝑗 (i.e., they are not in the 

same component). The larger 𝐿𝑖(𝑔) is, the smaller 

the path length player 𝑖 has to the other players. AID 

is the average of 𝐿𝑖(𝑔) (i.e., the inverse of distance) 

Economic Networks”. Princeton University Press, 

2008) 

Fig. 2. Schematic diagram of pay-it-forward in our algorithm  
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and a higher AID indicates a shorter path length 

between players in the whole social network. The 

higher ACC and AID are, the higher the clustering and 

the closer the distance between players are, 

respectively, which means that the network is more 

likely to be a small world. 

We also define social welfare (SW) as follows, and 

we analyze its change due to pay-it-forward. 

𝑆𝑊 = ∑ 𝑢𝑖𝑖∈𝑁 (𝑔)   () 

We simulated network formation with and without 

pay-it-forward and performed comparative dynamics 

of the Monte Carlo average in ACC, AID, and SW.  

3. Results 

3.1. Small-World Property Due to Pay-It-Forward  

Fig. 3(a), Fig. 3(b), and Fig. 3(c) represent the 

transition of ACC, AID, and SW, respectively, where 

the red line shows the case without pay-it-forward, 

while the blue line shows that with pay-it-forward. Fig. 

3(a) and Fig. 3(b) show that ACC and AID are larger 

with pay-it-forward from around 𝑡 = 250 than those 

without. This result clearly indicates that pay-it-

forward brings the small-world property. Fig. 3(c) 

shows that the SW is also larger with pay-it-forward 

than without pay-it-forward, which indicates that pay-

it-forward leads to higher SW. 

Pay-it-forward brought about the small-world 

property probably because it eliminated the disparity 

in degree, which we call the “degree disparity 

elimination effect” in the following. Fig. 4 shows the 

combinations of degrees in which links are formed in 

two-sided link formation in step 3 under peaceful 

times. This figure shows that there are only a limited 

number of combinations that can form a link, and in 

step 3, players with degree of one or higher do not 

form a link with an isolated player, and such pairs can 

only have a link through error/mutation in step 4. On 

the other hand, pay-it-forward enables such a pair to 

have a link even if the recipient’s degree is zero 

(isolated player), so the number of isolated players 

decreases quickly. In fact, Fig. 5(a), which shows the 

transition of the number of isolated players, represents 

that the decrease in the number of isolated players with 

pay-it-forward is accelerated at around 𝑡 = 250 

compared to the case without pay-it-forward. The 

decrease in isolated players likely accelerates the link 

formation during the subsequent peaceful time, 

resulting in small-world property. 

Fig. 4 also shows that in step 3 of peaceful time, 

players do not form a link when they have a large 

degree difference. Instead, only players with close 

degrees form a link, further increasing the degree 

disparity. On the other hand, during a disaster 

described in Section 2.3, links can be formed 

regardless of each other's degree, facilitating the 

elimination of degree disparity and promoting link 

formation during peaceful times. It results in larger 

ACC and AID. In fact, Fig. 5(b), which shows the 

transition of the standard deviation of degree, shows 

that the standard deviation increases until around 𝑡 =

Fig. 3. Comparative dynamics of (a)ACC, (b)AID, and (c)SW 

 

Fig. 4. Combinations of degrees of players in which link 

formation occurs in peaceful times 

Fig. 5. Comparative dynamics of (a) the number of isolated 

players and (b) standard deviation of degree 
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500 both with and without pay-it-forward, but after 

that, the standard deviation of degree becomes smaller 

with pay-it-forward than that without pay-it-forward. 

In summary, pay-it-forward decreases the number 

of isolated players dramatically between around 𝑡 =
250 and 500, Once the number of isolated players 

decreases and the degree disparity starts to be large 

(i.e., from approximately 𝑡 = 500 ), the standard 

deviation of degree decreases due to pay-it-forward. 

Accordingly, it is considered that the “degree disparity 

elimination effect” accelerates network formation 

during peaceful times, resulting in larger ACC, AID, 

and SW. 

3.2. Effects of Pay-It-Forward When Changing the 

Initial Network 

In order to analyze the mechanism of the long-term 

effect of pay-it-forward in more detail, we vary the 

initial network 𝑔1. As the initial network, we use the 

network 𝑔̂ = 𝑔1500, which was formed in 𝑡 = 1500 

only during peaceful times. Fig. 7 shows the histogram 

of degrees for 1000 networks, 𝑔̂ = 𝑔1500, generated 

by Monte Carlo simulation.  

Fig. 6(a) shows the transition of the Monte Carlo 

average of ACC when the initial network is 𝑔̂. The 

blue and red lines mean the cases with and without 

pay-it-forward, respectively. According to the figure, 

ACC is lower with pay-it-forward than without pay-it-

forward, around for 𝑡 < 500 . This is probably 

because pay-it-forward allows pairs with a significant 

degree disparity, in which they have difficulty forming 

a link during peaceful times, to form links through 

rewiring existing links. This rewiring possibly 

eliminates clusters.   

In contrast, after around 𝑡 = 800, ACC is higher in 

the case with pay-it-forward than in that without pay-

it-forward. This is probably due to the fact that player 

with lower degree increases their degree over time, 

and the gap of degree with the higher-degree player 

decreases (i.e., degree disparity elimination effect). 

Therefore, link formation during peaceful times is 

promoted, and cluster formation is accelerated.  

Fig. 8(a) shows the Monte Carlo average of the 
degree transition with and without pay-it-forward 

when we classify players with 𝑑𝑖 < 8  as Group 1 

and those with 𝑑𝑖 ≥ 8 as Group 2 at time 𝑡 = 1. This 

figure shows that the average degree of players in 

Group 1 increases faster than that in Group 2, which 

reduces the standard deviation of the degree, as shown 

in Fig. 8(b). According to Fig. 4, players whose degree 

exceeds eight are more likely to form links with 

players whose degree is up to 19. These facts indicate 

that although the pay-it-forward temporarily 

suppressed the increase in ACC, ACC increased in the 

long term as the degree disparity decreased and link 

formation progressed during peaceful times. 

Fig. 6(b) and Fig. 6(c) show the transition of AID 

and SW, respectively. The blue and red lines mean the 

cases with and without pay-it-forward, respectively. 

According to these figures, AID and SW are larger in 

the case with pay-it-forward than in the case without 

pay-it-forward. AID with pay-it-forward is larger than 

that without pay-it-forward from the beginning of 

simulation until 𝑡 = 3000. Meanwhile, SW show a 

Fig. 6. Comparative dynamics of (a)ACC, (b)AID, and (c)SW when the initial network is 𝑔̂  

 

Fig. 7. the histogram of degree distribution when the initial 

network is 𝑔̂ 

 

Fig. 8. Comparative dynamics of (a) average degree of Group 1 

(𝒅𝒊 < 𝟖) and Group 2 (𝒅𝒊 ≥ 𝟖) and (b) standard deviation of 

degree when the initial network is 𝒈̂ 
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similar trend to AID, becoming larger in the case with 

pay-it-forward than that without pay-it-forward. 

These results indicate that when the initial network 

has a significant degree disparity, pay-it-forward 

decreases ACC temporarily, but increases the degree 

of the players with smaller degrees (i.e., the degree 

disparity elimination effect). Accordingly, ACC and 

AID increase in the long run, resulting in the small-

world property and higher SW. 

4. Discussion and Conclusions 

In this study, we analyzed the long-term effects of 

pay-it-forward on social networks by conducting 

Monte Carlo simulations. The results showed that 

when the initial network was empty, pay-it-forward 

between people with different degrees who were not 

connected by daily interactions reduced degree 

disparity, bringing the small-world property to the 

network (Fig. 3(a) and Fig. 3(b)) and increasing social 

welfare (Fig. 3(c)). In the initial network with a large 

degree disparity, pay-it-forward reduced ACC 

temporarily, but in the long run, it increased ACC (Fig. 

6(a)), bringing about the small-world property (Fig. 

6(a) and Fig. 6(b)) and increasing social welfare (Fig. 

6(c)). This was because the degree disparity was 

eliminated by reducing the number of players with 

smaller degrees (Fig. 8), facilitating link addition in 

peaceful times. 

This study implies the positive sociological effect of 

pay-it-forward, which Atsumi [1] suggested, since it 

brings small-world property and increases social 

welfare. Its benefits to network formation were not 

necessarily short-term but gradual or long-term (i.e., a 

positive dynamic externality [16]). Moreover, when 

the initial network was empty, pay-it-forward had no 

negative effect on ACC and AID in the short run, but 

when the initial network had a significant degree 

disparity, it had a temporary negative effect on ACC. 

This may be because link rewiring leads cluster to 

dissolute in the existing network, as pointed out by 

Watts and Strogatz [8], and to accelerate the network 

formation during peaceful times, which requires a 

certain time for the positive sociological pay-it-

forward effects to be realized. 

In modeling pay-it-forward, we only considered the 

situation where only the recipients of the most recent 

disaster became support providers of the subsequent 

disaster. However, in reality, support from several past 

disaster areas has been reported [1]. Therefore, it is 

conceivable that more assistance will occur and more 

links will be formed among more people in reality than 

in this model. Accordingly, it can be said that this 

study has revealed the minimum impact of pay-it-

forward on social networks. 

By showing that pay-it-forward imparts small-

world property to social networks, this study 

contributes to the significance of disaster relief 

volunteer organizations that activate pay-it-forward 

and the rationale for promoting pay-it-forward. As 

described in Section 1, social networks with a small-

world property realize that information and knowledge 

are transmitted quickly, trust is easily formed, and 

innovation emergence and productivity are expected to 

increase [13,14,15]. It is also noteworthy that while 

realizing small-world property, pay-it-forward 

eliminated social isolation and closed the disparity in 

social connection. Pay-it-forward and the disaster 

volunteerism activating it, can contribute to realizing 

such a society. Disaster NPOs play an important role 

in promoting volunteer activities during disasters [21], 

and they have encouraged residents of past disaster 

areas to participate in volunteer activities [1]. While 

these organizations have mainly focused on 

psychological effects, the aforementioned sociological 

effects can be the rationale for promoting pay-it-

forward. 

This study leaves several issues for future research. 

First, although the links were weighted equally in this 

model (i.e., unweighted network), the interactions 

formed through pay-it-forward may continue more 

rigidly than those formed through daily activities. In 

step 5 in Section 2.3, when a support provider forms a 

new link during a disaster, the probability of selecting 

a neighbor to delete the existing link is equal for all 

neighbors. On the other hand, it has been reported that 

emergent networks during a disaster can persist 

afterward [22] suggesting that interactions obtained 

through pay-it-forward are likely to be continued 

afterward. Therefore, it is necessary to incorporate this 

difference in weights into the model in the future: the 

weights of interactions formed through pay-it-forward 

and those obtained through peaceful times are 

different. 

Second, pay-it-forward and network may co-evolve. 

Pay-it-forward spreads as more neighbors in the 

network engage in pay-it-forward behavior [11]. Thus, 

incorporating the increase in players who act 

altruistically during disasters into the network 

formation process is a future task. 

Third, as shown in Section 2.3, this study assumed 

that link formation during disasters was determined 

probabilistically or independently of daily utility, but 

link formation during disasters may also occur under 

rational decision-making. As discussed in Section 1, 

the indebtedness gained from the assisted experience 

may lead to motivations for subsequent assistance 

activities [5,6]. By modeling such motives [23], it may 

be possible to present an integrated framework that can 

understand both the psychological and sociological 

aspects of pay-it-forward. 

Although the above issues remain, this study is 

valuable as it demonstrated the sociological aspects of 

pay-it-forward (i.e., its effects on social networks) and 

elucidated its dynamics using a simple model. The 
most important result was to show that pay-it-forward 

brought about small-world property in society in the 

long term. 
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