KU-UTC Joint Summer Training Course on 'Road Infrastructure Asset Management', 2007

Life Cycle Cost (1)

Masamitsu Onishi Kiyoshi Kobayashi Kyoto University

Forecasting of Performance Deterioration

Why 'Stochastic Model'?

• Without considering 'Uncertainty'

We always make decisions taking account of 'uncertainty' in our daily lives.

Uncertainty Which is likely to occur 5 years later?

Complexity of Decision Making under Uncertainty

Risk in stock price

Irreversibility of investment

- 1. If the investment is reversible
 - In case that market environment goes bad than expected, an investor salvage his/her investment after investing decision.
- 2. If the investment is irreversible
 - The investment cannot be salvaged once it is made.

Call / Put Option

Real option

- Uncertainty and irreversibility in real business decision making
- Application of financial option to strategic decision makings in maintenance.
- Evaluating the value of flexibility in decision making

Intuitive concept of "Real Option"

Intuitive concept of "Real Option"

• Lottery in expecting winning team of the football league

Team A: 0 win, 0 lose Team B: 0 win, 0 lose Team C: 0 win, 0 lose Team C: 0 win, 0 lose Team C: 10 win, 0 lose Team C: 20 win, 20 lose Team C: 20 win, 30 lose Team C: 30 win, 20 lose Team C: 30 win, 30 lose

Human life as Real Option

Conditional Probability

 $\mathbf{P}(A \mid B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}$

Sample space is limited to the space *B* from space Ω

Classifications of Real option

- Option value related to project alternatives

 alternative option / switching option
- Option related to Timing
 - postpone option
 - abandon option / withdraw option
- Option related to Investment scale

 Extension option / reduction option

Development Option

Net Present Value(NPV)

1. Present value (PV) of expected profit of a project

$$PB = \frac{\prod_{i=0}^{r} B_{i}}{(1+r)^{i}}$$

- 2. Present value of expected cost of the project $PC = \frac{\prod_{i=0}^{r} C_{i}}{(1+r)^{i}}$
- 3. NPV=PB-PC ≥ 0
- 4. Internal Rate of Return (IRR)
 - r which gives NPV=0

Net Present Value (NPV)

B =
$$\frac{1}{3}$$
Ç 180 + $\frac{1}{3}$ Ç 90 + $\frac{1}{3}$ Ç 0 = 90

C = 100

- $B \ddot{A} C = 90 \ddot{A} 100$
 - = $\ddot{A}10 \longrightarrow abandon$

"Now or Never" discipline

Real option

t_1 : Additional cost 70 million \$

- B \ddot{A} C = 180 \ddot{A} 70 = 110 > 0 ... scenario 1
 - = 90 Å 70 = 20 > 0 ... scenario 2
 - = $0 \ddot{A} 70 = \ddot{A} 70 < 0$ ··· scenario 3 --- abandon

t₀ : Initial cost 30 million \$ B = $\frac{1}{3}$ Ç 110 + $\frac{1}{3}$ Ç 20 + $\frac{1}{3}$ Ç 0 = 43:3 B Ä C = 43:3 Ä 30 = 13:3 > 0 → Investment

Policy selection and future management costs

- Ex) •Life span: 2 periods
 - Discount rate is 0.5
 - Two management policies

'Do nothing option' is selected by LCC evaluation for individual facility

Multiple infrastructure

(Case1) Staggered regime

Generation		1	2	3	4	•••	
Do	А	10	0	10	0	• • •	
Nothing Option	В	0	10	0	10	•••	
	Total	10	10	10	10	•••	
Maintenance option	А	4	4	4	4		
	В	4	4	4	4		
	Total	8	8	8	8		

Maintenance option is desirable irrelevant to discount rate.

Average Cost minimization principle

Evaluating LCC as a flow of average costs equivalent, and minimizing the average cost

(Case 2) Synchronous regime

Generation		1	2	3	4	•••	
Do nothing option	А	0	10	0	10	•••	
	В	0	10	0	10	•••	
	Total	0	20	0	20	•••	
Maintenance option	А	4	4	4	4		
	В	4	4	4	4		
	Total	8	8	8	8		

Do nothing option is desirable

Desirable Evaluation Method

Staggered regime

By calculating optimal M&R policy based on **average cost minimization principle**, optimal M&R policy in the total system can be obtained.

Synchronized regime

By calculating optimal M&R policy based on **discounted present value principle**, optimal M&R policy in the total system can be obtained.

Staggered regime or Synchronized regime?

Advantage of staggered regime

- Preventing moral hazard in M&R decision
- Preventing the abuse in using reserved money
- Avoiding raising fund issues