Participatory Approach to Community Based Water Supply System

Kenshiro OGI, Ismu Rini Dwi ARI, Hayeong JEONG Kakuya MATSUSHIMA, Kiyoshi KOBAYASHI

Outline

- Research Background & Objective
- Spatial Probit Model
 - Model formulation
 - Model estimation
- Case Study
- Conclusion & Future Perspectives

Background

- Lack of access to clean water due to improper water institution
- There exists a kind of collaborative action on community based water supply system
- Necessitate of better understanding about local community structure and network
- Objective:
 - To investigate <u>interdependent preference</u> in a choice of clean water of the community on a field survey of Indonesian's water supply system

Spatial Probit Model

 Discrete-choice model for whether an household joins HIPPAM conditional on that household's characteristics

$$z = X\beta + \theta + \varepsilon \quad \varepsilon \sim N(0, I_n)$$
$$\theta = \rho W\theta + u \quad u \sim N(0, \sigma^2 I_n)$$

 $y_i = \begin{cases} 1 \text{ when household } i \text{ belongs to HIPPAM } z > 0 \\ 0 \text{ when household } i \text{ does not belong to HIPPAM } z \le 0 \end{cases}$

- θ : spatial interaction term
- X: households' attribute
- ρ: degree of spatial dependence across households
- W: spatial weight matrix about households' network

Model Estimation

- It is difficult to estimate spatial probit model by maximum likelihood since this model has complicated form
- Then, we use the Bayesian inference approach to estimate each parameters of equation by using the Markov Chain Monte Carlo (MCMC) method
- MCMC algorithm arrives at the target distribution of the unknown parameters by sequentially sampling from a set of conditional distributions of the parameters.

Bayes theorem $p(\theta | y) \propto L(y | \theta) \cdot \pi(\theta)$

p(·): posterior distributi on L(·): likelihood function $\pi(\cdot)$: prior distributi on

Case Study

- Field survey: December 2008
- 500 households living at Toyomarto village (TY) and Candi Renggo village (CR), Singosari district, East Java province
- The respondents are the husband, the wife or the head of family
- There exists two public water providers, HIPPAM (community based water supply system) and PDAM (Indonesia local water company)
- The dependent variable was defined as following:

 $y_i = \begin{cases} 1 \text{ when household } i \text{ belongs to HIPPAM } z > 0 \\ 0 \text{ when household } i \text{ belongs to PDAM } z \le 0 \end{cases}$

Explanatory Variables

- <u>FAM</u>: number of people in household
- <u>GENDER</u>: dummy variable which equals 1 if respondent is male
- <u>AGE</u>: age of respondent
- <u>EDU</u>: dummy variable which is recorded as 1 if respondent has educational background in the level of elementary school or junior school and recorded as 0 if high school or university.
- <u>OCCU</u>: dummy variable which is coded as 1 if occupation of respondent is Agricuture or manufacturing and coded as 0 if service or unemployment
- INCOME: household's monthly income which is divided into 7 items (less than 0.5, 0.5– 1.0, 1.0–1.5, 1.5–2.0, 2.0–2.5, 2.5–3.0, more than 3.0 million Rupiah), and we use the medians of each item.
- *LENGTH*: years of living in the area for respondent
 - <u>COST</u>: water charge per day (Rupiah)

Weight Matrix

- Hypothesis: households with stronger community tie have ability to organize community based on management system
- Therefore, we define a spatial weight matrix using the data about community networks

 $w_{ij}^{gk} = \begin{cases} 1 & \text{if household i and household j join the same social group k} \\ 0 & \text{otherwise} \end{cases}$

$$w_{ij} = \sum_{k=1}^{4} w_{ij}^{gk}$$

	1.Religious	2.Cultural /Social	3.Community organization	4.Finance
ΤY	138	28	14	15
CR	87	36	41	13

Estimation Results (TY)

	Spatial Probit Model						
Variable	p.Mean	p.Std.Dev	90% Credible Interval		Geweke		
constant	3.620	1.545	1.212	6.200	1.872		
FAM	-0.085	0.204	-0.415	0.246	0.603		
GENDER	0.035	0.509	-0.801	0.861	0.607		
AGE	-0.031	0.023	-0.069	0.006	1.680		
EDU	-0.136	0.579	-1.112	0.788	0.322		
OCCU	-0.234	0.485	-1.062	0.561	2.863		
INCOME	0.228	0.367	-0.364	0.844	0.499		
LENGTH	0.026	0.014	0.003	0.049	1.949		
COST	-0.004	0.001	-0.005	-0.003	2.224		
σ^2	0.128	0.027	0.092	0.177	1.220		
ρ	-9.016	5.486	-17.345	0.175	1.203		

Conclusion

- In this paper, we show the spatial probit model with using Bayesian estimation method in order to investigate resident's spontaneous collaboration to manage community based water supply system
- From the estimation results, we can say that <u>the length of living in the area</u> and <u>the price of monthly water usage</u> have an important meaning for respondent to make a decision to join community based water supply system.
- Future perspectives:
 - Another approach to get weight matrix through geographical neighbors
 - Social Network Analysis

Thank you for your attention