部分的知识下における火山噴火時の
避難指示意思決定論に関する研究

平成25年2月21日

京都大学工学部地球工学科土木コース

西本　恒
要 旨

自然災害発生時に被災する可能性のある地域の市町村長は住民の生命を守るために避難指示を行う。避難指示の失敗は大きな損失につながるので失敗を起こさないように避難指示を行う必要がある。しかし災害時には全ての現象についてわからない上で避難指示に関して意思決定を行うのではなく、曖昧性を残した上で意思決定を行わなければならない。本研究では、火山の噴火を対象として、災害発生前における合理的な避難指示意思決定について考察することを目的とする。また、噴火発生前における規範的な避難指示意思決定基準としてミニマックス・レグレット基準を導入する。
目次

第1章 はじめに 1

第2章 本研究の基本的な考え方 4
 2.1 従来の避難指示の検証 4
 2.2 避難指示意思決定時の状況の説明 5
 2.3 避難指示意思決定時の仮説検証 6
 2.4 意思決定の合理性についての説明 7
 2.5 ミニマックス・レグレット基準の導入 9

第3章 基本モデル 11
 3.1 モデルの前提条件 11
 3.2 行政の目的関数と最適避難措置 11
 3.3 部分的知識下での意思決定 12
 3.4 ミニマックス・レグレット基準 14
 3.5 ワーストシナリオ想定の最適性 16

第4章 合理的な避難指示に関する考察 18
 4.1 他の意思決定基準による意思決定 18
 4.1.1 記述のための変数設定 18
 4.1.2 ベイズルールに基づく意思決定 19
 4.1.3 マキシミン基準に基づく意思決定 20
 4.2 3つの意思決定基準の比較 21
 4.3 社会的な合理性に関する考察 25

第5章 おわりに 27

参考文献 29

付録A 避難計画に関する提言 付1
付録B 第4章の補足説明
第1章 はじめに

大規模な自然災害が近い将来に発生する可能性が確認された場合、その被害を受ける可能性がある地域の住民は災害が及ばない安全な場所への避難を行うなければならない。被害がその地域にまで及んだ時に人命に関わる致命的な損失を被ることになる。災害対策基本法の第六十条において、「災害が発生し、又は発生するおそれがある場合において、人の生命又は身体を災害から保護し、その他災害の拡大を防止するため特に必要があると認められるときは、市町村長は、必要と認める地域の居住者、滞在者その他の者に対し、避難のための立退きを指示することができます」1）と示されているように、近い将来において災害が発生する可能性が高く、急を要すると思われる場合、その地域の市町村長は住民や滞在者に対して避難するように指示することができる。

この時、住民に対して避難指示を行うべきかどうかを意思決定する者にはある大きな問題が生じる。まだ自然災害が発生していない段階においての避難指示を行うべきかどうかの判断は、災害が発生する時期や位置、発生する災害の規模や様式、時間推移についてまだ判明していない状況で行わなくてはならないため、住民に対して避難指示を出したがその地域には被害が及ばないといった事態や、避難指示や避難勧告を出していない状態でその地域に被害が及ぶといった事態が発生する。前者のような避難指示の空振りが発生する場合、多くの住民は避難所へ避難している間、生業に従事することができなくなり経済面での損失が生じる。また、避難所での生活は避難している住民にとって肉体的にも、精神的にも大きなストレスになる。一方で後者のような住民が避難されていない状態で災害がその地域に及ぶと人命に関わる致命的な被害を受けることになる。市町村長はこれらの避難指示に関する意思決定の失敗を起こさないためにも的確な意思決定を行うことが求められているといえる。

的確な意思決定を行うためには、現在直面している（もしくは近い将来発生しうる）自然災害がどのようなものであるのかを予測して意思決定をしなくてはいけない。また、正確な予測をするためには自然の観測によって得られる情報（以後、観測情報と呼ぶ）を活用する必要がある。たとえば、火山の噴火災害の場合では、噴
火災が近づくに連れ、火山性の地震が頻発することが知られている。東日本大震災では、東北地方太平洋沖地震に伴って津波が発生している。このように噴火や津波の災害が発生する前兆現象から続いて発生する自然災害がどのようなものであるのかを予測しなくてはいけない。しかし、これらの前兆現象は今後発生する自然災害について直接的に示しているものではないため、これらの観測情報からどのような自然災害が続いて発生するかを予測するためには高い専門性が必要であるといえる。そのため、的確な避難指示意思決定を行うためには、高い専門性を有しており、今後発生しうる自然災害の予測やそれに対する対応が可能である専門家の参加が必要不可欠であると考えられる。

しかし、専門家が意思決定に参加していれば避難指示に関する意思決定の失敗が一切なくなるというわけではない。将来発生する自然災害を予測する際には、その災害の可能な帰結の中でどの帰結になるのが確からしいという、確率を用いた表現をせざるを得ないが、災害時にはどのような事態になるのか、その確率空間が専門家にもわからないといったことが生じうる。確率空間が想定できない場合には、発生する自然災害に対するリスクの全体像を把握することができない。このような不確実性下での意思決定では、専門家が意思決定に参加している場合であっても的外れな避難措置を住民に対して行う可能性があると考えられる。

避難指示に関する意思決定の失敗を減らすためにも、自然災害が発生した時にはどのような基準に基づいて避難指示に関する意思決定を行うべきか、時間的余裕の少ない災害発生日の緊急対応に迫られる中で急いで考えるのはなく、事前に明白にしておく必要があると考えられる。しかし、災害時にはどのような基準に基づいて避難指示に関する意思決定を行うべきであるのか、その合理的な考え方の知見が存在しない。そのため、状況が不透明であるにも関わらず、住民の安全に対して責任のある市町村長は、住民に対して如何なる避難措置を行うべきかの判断に苦慮することになる。また、近年では観測技術が発展したことやその情報を伝達するシステムが整ってきたことを受けて、意思決定者は災害の状況の変化に応じた避難指示を出すことが求められるようになっている。ところが、このような動的な災害対応の体制はまだ十分に整っていない。本研究では火山の噴火災害を対象にして、噴火が発生するまでは噴火口の位置がどこになるのか、その確率が分からないという不確実性下での避難指示意思決定を問題とする。その上で、どのように避難指示に関する意思決定を行えばいいか提言することを目的とする。
なお，本研究では意思決定者を災害対策基本法に基づき，住民の安全に関して責任がある市町村長をすることを基本としつつも，大規模な自然災害が発生する際の災害対応を行うには市町村だけでなく対応能力では十分ではなく，災害の専門家や都道府県や国等のより広域的な機関も避難指示に関する意思決定には関与しているため，市町村長，専門家，その他広域的機関の区別をせず，一人の代行的な意思決定者を想定して「行政」として扱う。そのため，緊急時において情報が意思決定者に伝達されなかった等の情報伝達に関する観察が発生するといった問題は本研究では扱わないことにする。また，住民は行政の指示に対して従順に聞き入れ，避難指示内容の通りに行動すると想定する。そのため，自分の判断を信じ，リスクを自分で負うと決断しており，行政の避難指示に対して従わないので住民は，本稿での行政の避難指示対象者として想定しないこととする。

本稿では第2章において，本研究の基本的な考え方を述べるとともに，火山噴火時の意思決定を取り巻く環境や従来の意思決定の方法について示す。第3章では，第2章で説明した火山噴火発生時の意思決定環境を踏まえた上で，不確実性下での避難指示に関する意思決定のモデル化を行う。また，そのモデルでの意思決定基準における合理的な避難措置について考えていく。第4章において，第3章で用いた意思決定基準と他の意思決定基準との避難措置選択の比較を行い，意思決定者は火山噴火時にはどのような意思決定基準に基づいて避難措置の選択を行うべきか考察を行う。第5章では，これまでの議論を簡単に振り返りながら，今後の災害時における避難指示意思決定について考察する。
第2章 本研究の基本的な考え方

2.1 従来の避難指示の検証

火山を観測する体制や情報を共有する仕組が不十分であった時代では、将来発生する噴火に対して出される避難措置は過去の噴火事例に依存して決定されていた。このような過去の事例に基づいた意思決定のモデル化をギルボアとシュマイドラー (I. Gilboa and D. Schmeidler) は行っている 3)。このモデルでは、現在直面している噴火事例と過去の関係を評価値（過去に起こった事例において同じ避難措置をとった場合に得られる効用の加算）として定義している。火山の観測技術が低く、情報を共有する仕組が不十分であった時代では、過去の噴火事例に基づいて避難指示を出すべきか出さないべきかの意思決定を行うことは有効であったかもしれない。また、将来発生しうる噴火に対する危険性を認識するのに現在でも有効であることは否定しない。しかし、過去の事例に依存した意思決定は、現在直面している噴火事象が過去の事例で起こった噴火に近いものであろうという認識に基づいて行われている。そのため、過去の事例で生じた噴火事象とは大きく異なる噴火事象が発生する可能性について十分に想定されているとはいいえない。また、活動火山対策特別措置法では、第十九条では火山現象の研究体制の構築の必要性、第二十条では警戒避難体制の構築の必要性、第二十一条では火山現象に関する情報の伝達等の必要性が述べられている 4)。現在の火山を観測する技術は将来どのような噴火が発生するのか完全な予測が行えるとはいかないまでも、基礎研究を進んだこともあり相当程度の予測が可能になっている。その他、観測体制や情報を伝達するシステムを整備している。将来発生する可能性がある噴火事象に対して、かつては過去の噴火事例に依存した判断、もしくは事態の進行を意思決定に反映できない静的な判断しかできなかったが、現在は基礎研究が進んだことや観測技術が発展したこと、情報の伝達システムが整ってきたことを受けて、様々な情報を活用して時々刻々と変化する噴火事象に対応した避難指示の判断をしなくてもならない状況になっているといえる。
しかし、新しく得られる観測情報に応じて避難指示意思決定が行われる場合にも問題は残されている。三宅島2000年の噴火は、海底での小規模噴火の発生段階まで、最近の経験から判断される経緯をたどったが、マグマの西方への貫入による大規模な群発性地震発生以降からは、最近の経験からでは計れない展開になり、異常な活動が継続し予測が不能な状態に陥った5）。三宅島では15世紀以降繰り返し発生してきた山腹割れ目噴火とそれに付随する山頂噴火を想定して防災対応を行っていたが、3000年ぶりにカルデラを生成する活動となり、対応が十分ではなかった6）。また、1990年から始まった雲仙火山の噴火は、江戸時代の噴火を想定して研究者も行政も対応していたが、4000年ぶりの規模の大きい噴火となり、噴火の規模や様式の予測において、期待に十分に応えられなかった6）。このように、新しく得られる観測情報を意思決定に反映させる動的な避難指示が行われたとしても、元々想定されていたシナリオから逸脱した現象が発生することによって、避難指示に関する意思決定を失敗してしまうケースが過去には発生している。このような失敗を今後の災害発生時における避難指示に関する意思決定では起こさないように、計画段階や災害発生初期の段階では減多に起こらないような大きな被害をもたらす現象についても想定しておくことが必要であるといえる。

2.2 避難指示意思決定時の状況の説明

本研究では、自然災害が発生する時における避難指示に関して規範的な意思決定基準を明白にすることを目的としているため、避難指示に関する意思決定が行われる状況（ここでは火山の噴火が発生する前の状況）について示すことが必要であるといえる。

火山噴火の発生が近づくに連れて、火山性地震が頻発することが過去の多くの事例で見られている。また、近年は観測技術が発展したことにより、マグマ活動、地盤変動等の観測情報を得ることができるようになっている。このように火山の噴火が発生する前には様々な前兆現象を観測することができる。専門家はこれらの前兆現象から噴火が発生する可能性が高いかどうかを判断する。噴火の可能性が高いと判断され、急を要するとされた場合は行政により、住民に対して避難指示が出される。この時、専門家は過去の噴火事例や前兆現象が活性化しているという観測情報を持って、噴火の危険性が高くなっているという判断を下すことは可能であ
るが、観測技術は完璧ではないため噴火口の位置がどこであるのか、噴火が発生するはいつなのかといったことは確率がわからない。すなわち、火山の噴火が発生する前の段階では、行政が不確実性下で避難指示を行うかどうか意思決定を行っているといえる。竹村らは不確実性下を「選択肢を採択したことによる結果の確率が既知でない状況」と定義している7）。ここで考える火山噴火時の意思決定は不確実性下の意思決定の中でも特に曖昧性の下における意思決定である。竹村らの定義では、曖昧性とは「どのような状態や結果が出現するかはわからないが、状態や結果の出現確率がわからない状況」をいう。このような状況下では、火山の観測情報や過去の噴火事例の記録は将来どのような噴火が発生するのかを予測するための証拠となるが、その発生確率を知るための証拠としては不十分であると考えられる。

意思決定者は避難指示に関する意思決定を行う時にはこれらの情報や記録しか有しておらず、将来発生する噴火事象について部分的な知識しか持っていないといえる。サイモン（Herbert A. Simon）によると知識が部分的であるとは主として、全ての代替案を知っていないこと、外生的な事象について不確実性があること、そして帰結の計算ができないことを意味している8）。火山の噴火が発生する前の段階では、噴火口の位置がどこにあるのか確率空間がわからないため、噴火事象について不確実性があるといえる。災害発生時の避難指示意思決定では意思決定者の判断に住民や潜在者の命が関わっているため、火山噴火の帰結が計算できないからといって、意思決定を先延ばしにするようなことがあってはいけない。意思決定者は将来発生する噴火事象の証拠となる観測情報や過去の記録からは部分的にしか知ることができないとしても、住民に対して如何なる避難措置を行うべきかを判断しなければならないといえる。

2.3 避難指示意思決定時の仮説検証

意思決定者である行政が噴火の被害を受ける可能性がある地域の住民に対して避難指示を出すか出さないかを判断することは、行政が「意思決定の対象となる地域に噴火の被害が及ぶ」という仮説を受け入れるか、棄却するか判断することと同義であるといえる、ネイマンとピアソン（J. Neyman and E.S. Pearson）は仮説検定において、二種類の誤りがあることを示した9）。1つは、仮説が真である時にそれ
表2.1 火山噴火時における仮説検証

<table>
<thead>
<tr>
<th>避難指示を出さない</th>
<th>避難指示を出す</th>
</tr>
</thead>
<tbody>
<tr>
<td>地点Aに災害が及ぼない</td>
<td>生命の存続</td>
</tr>
<tr>
<td>生命に関わる被害</td>
<td>生命の存続</td>
</tr>
<tr>
<td>避難生活の回避</td>
<td>結果的に無駄な避難生活</td>
</tr>
<tr>
<td>避難生活</td>
<td></td>
</tr>
</tbody>
</table>

を棄却してしまう誤りであり、これを第1種の誤りと呼ぶ。もう1つは、仮説が偽である時にそれを受け入れてしまう誤りであり、これを第2種の誤りと呼ぶ。火山噴火の場面で考えると、仮に仮説を「地点Aに災害が及ぶ」というものにすると第1種の誤りとは、地点Aに噴火の被害が及ぶにも関わらず、行政は地点Aの住民や滞在者に対して避難指示を出していなかったために住民や滞在者の生命や身体に致命的な被害を受けることを意味する。一方で、第2種の誤りは、地点Aには噴火の被害が及ばないにも関わらず、行政は地点Aの住民や滞在者に対して避難指示を出しており、その避難指示が結果的に空振りに終わるという誤りを意味する。この火山噴火時の仮説検定は表2.1のように表される。意思決定者である行政は火山の噴火時における避難指示意思決定を行う場合には、これら二種類の誤りが起こりうることを考慮しておく必要がある。また、災害発生初期から火山の噴火活動が収まるまでの期間において避難指示に関する意思決定を行う際、第1種の誤りと第2種の誤りとでは、その誤りの重みには大きな差があると考えられる。意思決定者は、住民や滞在者の生命や身体に致命的な被害が及ばないようにすることを避難指示に関する意思決定を行う際の第1の目的とするべきであり、避難指示が空振りに終わることによる損失を減少させることは意思決定を行う際の副次的な目標であるといえる。

2.4 意思決定の合理性についての説明

この様な不確実性下での意思決定理論としては、フォン・ノイマンとモルゲンシュテルン（J. von Neumann and O. Morgenstern）により公理的基礎が確立されて以来、期待効用理論が規範的な位置づけであった。伊藤10)によると、期待効用が計算されるた
めには次の4つの要請が認められる必要がある。すなわち、

1. 帰結の効用は数値に換算できること。

2. 帰結の価値の決定には、この数的な効用以外のものは考慮に入れられないこと、

3. 事象の可能性についての意思決定者の信念は、それぞれの可能な事象に対する意思決定者の確率計算の値として一意的に表すことができること。

4. おのおのの可能な事象の確率は、なるべき意思決定とは独立に与えられること。

の4つの要請を認められる必要がある。

一方、確率の計算が可能であるためには、全ての発生する可能性がある事象について意思決定者が認識していなくてはならない。しかし、火山の噴火事象は噴火規模や位置、時期、様式等の属性が異なると別々の事象であると考えることができるのが、噴火地点はどこであるのか、また火砕流が発生するかどうかといった噴火の様式は統計的に決るものではない。どのような噴火位置になるか、どのような噴火様式になるのかといった候補を挙げることはできるがその確率についてはわからないという不確実性下で行政は避難指示に関する意思決定を行わなければならない。そのため、上記の噴火事象の属性を考慮した上で、発生する可能性がある全ての噴火事象の一つ一つに対して、その噴火事象が発生することへの主観的な確信の度合いを確率によって表現するのは困難であるといえる。すなわち、上記の期待効用を計算するための要請3を満たすことが困難である。ゆえに、噴火事象の属性を考慮した上で全ての発生する可能性がある噴火事象を想定しての期待効用に基づいて意思決定理論は火山噴火発生前の避難指示に関する意思決定には適していないと考えられる。

どのような災害事象が発生するのか、その確率がわからない不確実下での意思決定を強いられているとはいえ、意思決定者が発生しうる噴火事象の一つ一つに対して無理やりにも主観的確率を与えて、確率分布を形成すれば期待効用理論に基づいて避難指示に関する意思決定が行えると考えられる。しかし、主観的確率に基づく判断は、重大な誤りやバイアスに基づいていることが多い11)。トヴェルスキーとカーネマン（Amos Tversky and Daniel Kahneman）は、人が確率を評価するといった複雑な作業を行う多くの場合におけるヒューリスティック（heuristic）に頼ること、複雑な確率の評価といった作業を単純な判断作業に置き換えるものとして、ヒューリス
テクスに頼ることは多くの場合で有効であるが、深刻なエラーに繋がる可能性があることを示した。したがって、火山の観測情報が得られた場合、意思決定がかつて火山の噴火の被害を受けた経験がある場合、噴火の被害が及ぶと考える主観的な事後確率は噴火の被害をかつての噴火事例で受けなかった経験がある場合の主観的な事後確率とは異なることが考えられる。また、噴火のリスクを評価するに当たって、想像しやすい事象に対して発生確率を過度に高く見積もる。想像しにくい事象に対しては発生確率を過度に低く見積もる、場合によっては想定の範囲から除外してしまう場合も考えられる。このように、主観的確率に基づいた避難指示意思決定の理論は厳格的な理論として用いるには信頼できるものではないと思われる。専門家が噴火口の位置について確率を特定することは客観的に不可能であると判断したとする。市町村長が噴火口の位置に対して主観的な確率を与え、その確率から期待効用に基づく避難指示意思決定を行うことは、噴火による致命的な損失を回避するのに適した意思決定であるとはいえない。

2.5 ミニマックス・レグレット基準の導入

あらかじめ、起こりうる噴火事象を全て想定した確率モデルを組んでおけば、どのような噴火事象が発生した場合でも確率空間を変更する必要はない。また、観測情報が得られる毎にベイズの定理に基づいて、「噴火の被害が及ぶ」という仮説に対する信念の度合いを変化させることも可能である。しかし、全ての噴火事象を想定した上で確率空間を構成するのは、噴火が発生する時期や位置、発生する噴火の規模や様式、時間推移等の噴火事象の属性を考慮していくと不確実性があるために困難であることは前述の通りである。また、いくらシナリオを描いたとしても想定していないシナリオが起こる可能性が残る。そのため、発生する可能性がある火山の噴火事象を全てとは言わずで、ワーストシナリオを含む確率空間を災害発生前に想定しておくことが必要であると考えられる。ワーストシナリオを想定した避難計画が事前に立てられていたば、仮にワーストシナリオが発生したとしても、行政はそのワーストシナリオに対して発生する可能性があることを認識しており、確率モデル内では想定されていないシナリオであるため、適切だと思われる避難指示を出すことができないといった事態が生じることがなくなる。ゆえに、火山の噴火発生前において、避難指示に関する意思決定を行う際にはワー
ストシナリオが想定されていることが重要であるといえる。
行政は火山の噴火が発生する前の段階では、火山の観測情報から住民に対してどのような避難措置を行うべきかを判断しなければならない。この際、行政は将来発生しうる噴火事象について、各の噴火事象がどれほどの蓋然性をもって発生するのか知っておらず、噴火事象の全体像についても部分的にしかわかっていないといえる。このような不確実性下での部分的知識に基づいた意思決定方法として、ミニマックス・レグレット（minimax regret）モデルが存在する。このモデルは、意思決定者は自分が行った意思決定が自分の置かれた状況の中での最適な意思決定とは異なる意思決定を行うことによって生じる後悔というものが最も大きくなる自然の状態に関する確率分布を想定して、その確率分布内での後悔が最小になるように意思決定を行うというモデルである。後悔に関する理論の重要な点は、人は実際に取った選択肢の帰結と取っていたかもしれない選択肢の帰結を比較する傾向があることである13)。火山噴火が発生する前の段階では、避難指示に関する意思決定も噴火事象の全体像がわかっていない中で行われるため、全体像がわかっている場合と同じような避難措置を出すことができない。また、観測によって得られる情報からどのような噴火事象が発生するのかは直接示されているものではなく、行政はその観測情報からどのような噴火事象が発生するのか予測しなければならないが、その予測が正確に行われることは限らない。そのため、行政は自分の行った避難指示に関する意思決定が最適なものとは異なることによって後悔が生じる可能性が考えられる。本稿では第3章において、このミニマックス・レグレットモデルを用いて、火山噴火発生前における部分的知識下における避難指示意思決定をモデル化し、どのような基準に基づいて意思決定を行うべきであるのか考察を行う。
第3章 基本モデル

3.1 モデルの前提条件

噴火のリスクが顕在化した際に、行政が避難措置の具体的な方法$a \in A$を選択する。Aは、全ての実行可能な避難措置方法の集合である。一方で、どのような噴火が発生するかは、噴火口の位置$t \in T$、噴火規模$s \in S$によって決まると想定する。Tは考え得る噴火口の位置全体の集合、Sは考え得る噴火規模を表す状態変数全体の集合である。発生する噴火のハザードを$y \in Y$で表すと、

$$y = \hat{y}(t, s)$$

で表される。なお、Yは考え得る噴火のハザード全体の集合である。\hat{y}は確定的な関数であり、ここでyは確率変数t及びsをパラメータとする確率的関数である。

行政は、住民が居住する全ての地区ごとに、避難措置方法を選択しなければならない。また、火山の噴火が発生する前の段階での避難措置の意思決定は、噴火口の位置及び噴火規模が判明する前の段階で行われる。したがって、t及びsは、確率変数として表現される。行政はあらかじめt及びsを確定的に知ることはできないが、火山性地震動や地盤変動といった噴火現象と関係がある変数（covariates）$x \in X$を観察することができる。Xは観測情報の集合である。

3.2 行政の目的関数と最適避難措置

火山の観測情報xが得られた時、行政はどのような噴火が発生するかを予測して、住民に対して実行可能な避難措置方法を選択する。避難措置方法aが選択された時の効用は、

$$u(a) \equiv u(y, a)$$

で表されるとする。$u(\cdot, \cdot)$は$Y \times A \to R$の効用関数である。行政は関数$u(\cdot, \cdot)$の形を知っており、自らの選好順序についても知っているものとする。また、行政は火山の観測によって情報xを得ることができ、しかし、行政が避難指示に関する意思決定

11
を行う、火山の噴火が発生する前の段階では、どのような噴火のハザードyが発生するのか、まだ観測できていない。そのため、行政は観測情報xから発生する噴火ハザードについて予測しなくてはならない。

たとえば、$c(a)$を行政が住民に対して避難措置方法aを選択した時に掛かる費用とすると、発生した噴火のハザードがyであった時に得られる効用$u(y,a)$は

$$u(y,a) = r(y,a) - c(a)$$ (3.3)

のような加法的効用関数で表現が可能である。ここで、式 (3.3) 内での$r(y,a)$は行政が避難措置aを住民に対して行った際、噴火ハザードyが発生した場合の噴火事例としての帰結を表しているとすると、意思決定時には行政は費用$c(a)$がどの程度の大きさであるのか知っているが、発生する噴火のハザードyがどのようなものになり、どのような喷火事例の帰結$r(y,a)$になるのかはわからない。なお、災害発生時における意思決定では生命に関わる致命的な被害が生じるような事態を回避することが最優先事項であると考えられること、災害の発生が直接に迫っているため避難措置を行うことの費用対効果を考えている場合ではないことを考慮し、式 (3.3) のような費用を考慮した効用関数は適していないと考えられる。そのため、本稿では効用関数を必ずしも式 (3.3) のようには定めないものとする。

ここで、観測情報ξを得ることができたとする。行政が意思決定対象としている地点に避難措置aを出すことに対する評価値として、社会的効用関数を

$$U[a,P(y)] = E[u(a) \mid \xi]$$ (3.4)

と定義する。$P(y)$は噴火ハザードyに関する確率分布である。仮に、発生する噴火ハザードに関する確率分布$P(y)$が意思決定時点において既知であるならば、行政は次の最適化問題を解く事によって、行うべき避難措置方法を決定することができる。

$$\max_{a \in A} U[a,P(y)]$$ (3.5)

この式の解が、確率分布$P(y)$が意思決定時点において既知である場合における最適な避難措置である。

3.3 部分的知識下での意思決定

行政が避難指示に関する意思決定を行うためには、発生する噴火ハザードに関する確率分布$P(y)$を知っていなくてはならない。仮に行政が確率分布$P(y)$を知ってい
るならば，式 (3.5) に従って最適な避難措置を住民に対して行うことが可能である。しかし，意思決定時点において，行政は必ずしも発生する噴火ハザードに関する確率分布について知っているわけではない。特に喷火口がどの位置に発生するのかは，確率的な表現を使ってでさえ，噴火活動が始まる前に知ることは，現在の観測技術では難しいといえる。行政が観測情報ξを得た際に，今後発生する噴火ハザードがyだと考える度合いをP(y | ξ)とすると，

\[P(y | ξ) = \sum_{τ ∈ T} P[\hat{y}(τ, s) | ξ]P(τ | ξ) \] (3.6)

が成立する。この式は，観測情報ξを得た時，喷火口の位置がτ = τであることがわかった場合の発生する噴火ハザード\(\hat{y}(τ, s) \)に関する分布である。\(\hat{y}(τ, s) \)はsをパラメータとする確率的関数であるという。噴火口の位置がτに定まれば，噴火規模sは統計的に決まると考えられる。そのため，噴火口の位置がτの時に発生する噴火ハザード\(\hat{y}(τ, s) \)も統計的に決定される。しかし，観測情報ξを得ることで，噴火口の位置が定まっている時の噴火の規模に関する分布が統計的に決まるのに対して，T上の噴火口の発生位置に関する分布\(P(τ | ξ) \)を特定することはできない。観測情報からは，噴火口が生じるであろう範囲程度まではしか分からず，その範囲内のどの位置に噴火口がどの程度の蓋然性で発生するのかまでは特定することができない。すなわち，行政は式 (3.6) 内での\(P(τ | ξ) \)がどのようなものかわからないため，噴火ハザードに関する分布\(P(y | ξ) \)についても知ることができない。このように不確定な要因を抱えたままで行う。行政は避難指示に関する意思決定を行うことができない。ここでは，行政が噴火口の位置に関する確率分布を仮想的に与えることによって，このような問題を対処することとする。

\(γ \)を噴火口の発生位置に関する確率分布とする。観測情報ξが得られた時，確率分布\(γ \)において噴火口の位置がτである確率を\(P_γ(τ | ξ) \)で表す。このとき，\(P(y | ξ) \)が発生する領域は，

\(H\{P(y | ξ)\} = \left\{ \sum_{τ ∈ \Gamma_ξ} P[\hat{y}(τ, s) | ξ]P_γ(τ | ξ), γ ∈ Γ_ξ \right\} \) (3.7)

として表すことができる。式 (3.7) において，\(\Gamma_ξ \)は観測情報ξが得られた時に発生する噴火口の位置の範囲を表しており，噴火口は必ずこの範囲内で発生するもの
とする。すなわち、

$$\sum_{\tau \in T_\xi} P_\gamma(\tau \mid \xi) = 1 \quad (3.8)$$

を満たすとする。$$T_\xi$$ は$$T$$ の部分集合である。また，$$\Gamma_{T_\xi}$$ は観測情報$$\xi$$ が得られた際に考え得る噴火口の位置に関する確率分布$$\gamma$$ で構成される集合である。このように，噴火口の位置に関する確率分布を$$\gamma$$ と仮定することによって，$$P(y \mid \xi)$$ を擬似的に仮定することができる。それによって一時的にそれまでの不確実な要因を考慮する必要がなくなるので行政は意思決定が可能になる。

3.4 ミニマックス・レグレット基準

前節で示したように，噴火口の位置について確率分布が分からないため，意思決定者である行政はどのような噴火が発生するのか部分的な知識しか有していないといえる。知識が部分的である場合には，どのような意思決定基準が望ましいかという問題は，従来から研究が行われてきている。しかし，現在までに，最も合理的とされる基準について合意が存在しているわけではない。本研究では，サヴェイジ（L.J. Savage）による，ミニマックス・レグレット基準に基づいて，意思決定問題を定式化する。

今，観測情報$$\xi$$ が得られたとし，噴火口の位置に関する確率分布が$$\gamma \in \Gamma_{T_\xi}$$ である場合を考える。この時，考え得る噴火口の位置は式 (3.8) を満たすとする。行政が避難措置$$a$$ を選択したとすると，その時の効用の期待値$$E_\gamma[u(a) \mid \xi]$$ は次のように表すことができる。

$$E_\gamma[u(a) \mid \xi] = \sum_{\tau \in \Gamma_{T_\xi}} E_{u(a) \mid \xi,\tau} P_\gamma(\tau \mid \xi)$$

ミニマックス・レグレット基準に基づく避難指示意思決定は，以下のように定式化される。

$$\inf_{a \in A} \sup_{\gamma \in \Gamma_{T_\xi}} \{U^*(P_\gamma) - U(a, P_\gamma)\}$$

(3.10)

ここで，$$U^*(P_\gamma)$$ は，噴火口の位置に関する確率分布が$$\gamma$$ である時に，行政が最適な避難措置を選択した場合に得られる社会的効用を表しており，以下のように定義することができる。

$$U^*(P_\gamma) \equiv \max_{a \in A} \sum_{\tau \in T_\xi} E_{u(a) \mid \xi,\tau} P_\gamma(\tau \mid \xi)$$

(3.11)
また，$U(a, P_\gamma)$は噴口の位置に関する確率分布がγである時に，行政が避難措置aを選択した場合の社会的効用であり，

$$U(a, P_\gamma) \equiv \sum_{\tau \in T_\xi} E[u(a) \mid \xi, \tau] P_\gamma(\tau \mid \xi)$$ (3.12)

と定義することができる．この時，$U^*(P_\gamma) - U(a, P_\gamma)$は噴口の位置に関する確率分布が$\gamma$の時に，避難措置$a$を選択したことに対する後悔という．後悔は最も適な避難措置を選択することができなかったために生じる損失である．ミニマックス・レグラメント基準では，この後悔が最も大きくなる噴口の位置に関する確率分布を想定する．そして，その確率分布における後悔が最も小さくなるように避難措置を選択するというものである．

ここで，後悔$U^*(P_\gamma) - U(a, P_\gamma)$に式 (3.11)，(3.12) を代入し，

$$U^*(P_\gamma) - U(a, P_\gamma) = \max_{a \in A} \sum_{\tau \in T_\xi} E[u(a) \mid \xi, \tau] P_\gamma(\tau \mid \xi) - \sum_{\tau \in T_\xi} E[u(a) \mid \xi, \tau] P_\gamma(\tau \mid \xi)$$ (3.13)

と表される．噴口の位置に関する確率分布がγである時の最適な避難措置方法をa^*で表すと，式 (3.13) は，

$$U^*(P_\gamma) - U(a, P_\gamma) = \sum_{\tau \in T_\xi} E[u(a^*) - u(a) \mid \xi, \tau] P_\gamma(\tau \mid \xi)$$ (3.14)

となる．この式より後悔の最大値は次のように表すことができる．

$$\sup_{\gamma \in T_\xi} \{U^*(P_\gamma) - U(a, P_\gamma)\}$$

$$= \sup_{\gamma \in T_\xi} \sum_{\tau \in T_\xi} E[u(a^*) - u(a) \mid \xi, \tau] P_\gamma(\tau \mid \xi)$$ (3.15)

式 (3.15) より，$E[u(a^*) - u(a) \mid \xi, \tau]$が最も大きくなる噴口の位置$t = \tau_{mnr}$に対しても$P_\gamma(\tau_{mnr} \mid \xi) = 1$となる確率分布を想定すれば後悔が最大になる．以上より，ミニマックス・レグラメント基準に基づく避難指示意思決定の式 (3.10) は次のように表すことができる．

$$\inf_{a \in A} E[u(a^*) - u(a) \mid \xi, \tau_{mnr}^*]$$ (3.16)

式 (3.16) を満たす避難措置方法をa_{mnr}とすると，

$$a_{mnr} = \arg \max_{a \in A} E[u(a) \mid \xi, \tau_{mnr}^*]$$ (3.17)

15
と表すことができる。行政は、ミナマックス・レグレット基準に基づいて避難指示に関する意思決定を行う場合、観測情報ξが得られた時は、噴火口位置を\(r_{\text{mmr}} \)と想定して、避難措置\(a_{\text{mmr}} \)を意思決定対象地域の住民に対して行うのが最適であるといえる。

なお、ある噴火口から噴火が発生したとしても噴火の被害を受ける確率は地域によって異なる。そのため、意思決定の対象としている地域毎に後悔が最も大きくなる場合の噴火口の位置が異なっているといえる。行政は全ての意思決定対象となる地域に対して、このような手順に基づいて噴火口の位置の想定および避難措置方法の選択を行う必要がある。

3.5 ワーストシナリオ想定の最適性

ミナマックス・レグレット基準に基づいて避難指示意思決定を行う場合、噴火口の位置がどこになるのか、その確率がわからないという不確実性に対して、意思決定による後悔が最も大きくなるシナリオを想定して、避難措置方法の選択を行う。具体的には、確率1で噴火口の位置が後悔の最も大きくなる可能性がある\(r_{\text{mmr}} \)となる確率分布を想定して避難措置方法の選択を行っている。このようにミナマックス・レグレット基準に基づいて避難指示意思決定を行う場合、行政は後悔が最も大きくなる噴火口を一箇所想定して、その噴火口から噴火が発生する場合に後悔が最も小さくなる避難措置方法を選択するのが最適であるといえる。

それに対して、噴火事例が進行し、観測情報も蓄積されてきたことにより、噴火口の位置が実際にどこであるのか特定された場合を考える。このような場合、行政が避難指示に関する意思決定を行う時には既に噴火口の位置は確定しているため不確実性がない。また噴火規模は統計的に決まると想定しているため、どのような噴火ハザード\(y \)が発生するかも統計的に決まる。行政はその噴火口から発生する噴火ハザードが統計的に決まる際の最適な避難措置方法を全ての意思決定対象となる地域の住民に対して行えばよい。

たとえば、2000年有珠山噴火を受けて、有珠山近辺の4市町から成る有珠火山防災会議協議会15)では、噴火口の位置が未確定の段階では、山頂から最大規模の噴火が発生するというシナリオが想定された避難体制を取り、噴火口の位置が確定されてからは、避難地区を限定した避難対策を行うように定めている。このように
噴火口の位置が未確定である災害初期にはワーストシナリオを想定して最適な避難措置を選択することが求められている。また、ミニマックス・レグレット基準に基づいて不確実性下での避難指示意思決定を行う場合、必ずしも噴火口の位置として山頂を想定するように限定する必要はなく、各々の意思決定対象となる地点に対して、後悔が最も大きくなるシナリオを想定した地点から噴火が発生すると想定して避難体制を取りればよいこともわかる。
第4章 合理的な避難指示に関する考察

4.1 他の意思決定基準による意思決定

4.1.1 記述のための変数設定

第3章で述べたように知識が部分的である場合の意思決定基準に関する研究は含蓄されているが、最も合理的とされる基準がどれであるのか合意がなされていない。火山の噴火が発生する前の段階では、噴火口の位置に関する確率分布がわかっていなかった。それに対して、仮想的に噴火口の位置に関する確率分布γを想定することによって意思決定を行うことができる。意思決定を行う場合、行政は噴火口の位置に関する確率分布の集合Γτに対して平均的に見れば最もうまく機能する避難措置を選択するような意思決定基準をもしくはΓτ内のある特定の確率分布γに対して最もうまく機能する避難措置を選択するような意思決定基準に基づくのが合理的であると考えられる可能性がある。マンスキー（Cherles F. Manski）は、ベイズルール（Bayes rule）、マキシミン基準（maximin criterion）、ミニマックス・レグレット基準の3つの基準を知識が部分的である時の意思決定基準として提示している16）。本章では、これらの3つの意思決定基準のうち、ベイズルール、マキシミン基準に基づく火山の噴火発生時における避難指示意思決定では、行政はどのようにして住民に対して意思決定を行うべきであるのかを考察する。また、この2つの基準に基づく場合とミニマックス・レグレット基準に基づく場合とでは避難指示に関する意思決定はどのような点が異なるのか比較を行う。

本章では簡略化のため、実行可能な避難措置方法の集合をA＝{a₁, a₂}とする。ここでは、a₁を住民に対して避難指示を出さない、a₂を住民に対して避難指示を出すという避難措置方法に設定する。また噴火口の位置がτである時、噴火の規模sがs ≤ sτの場合は噴火ハザードy₁が発生し、噴火の規模sがs > sτの場合は噴火ハザードy₂が発生すると定め、噴火ハザードの集合をY＝{y₁, y₂}とする。y₁は意思決定の対象となる地点に噴火の被害が及ばない噴火ハザードを表しており、y₂は意思決定の対象となる地点に噴火の被害が及ぶ噴火ハザードを表しているとする。この時
表4.1 喪火発生時の意思決定による効用

<table>
<thead>
<tr>
<th></th>
<th>y_1</th>
<th>y_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>$u(y_1, a_1)$</td>
<td>$u(y_2, a_1)$</td>
</tr>
<tr>
<td>a_2</td>
<td>$u(y_1, a_2)$</td>
<td>$u(y_2, a_2)$</td>
</tr>
</tbody>
</table>

の避難指示意思決定による効用を表したもののが表4.1である。なお、効用$u(y_1, a_2)$と効用$u(y_2, a_2)$の大きさを比較すると、本稿では意思決定の失敗が効用$u(y_2, a_2)$が得られる場合には生じていないことを考慮し、$u(y_2, a_2) > u(y_1, a_2)$とする。よって、全体の効用を比較すると、$u(y_1, a_1) > u(y_2, a_2) > u(y_1, a_2) > u(y_2, a_1)$になる。また、観測情報$\xi$が得られた時、崩火ハザード$y_2$が発生する確率$P(s > s_\tau | \xi)$を$P_{\xi \tau}$と表記する。以上より、観測情報$\xi$が得られた時、行政が想定している崩火口の位置に関する確率分布が$\gamma \in \Gamma_{T\xi}$である場合を考える。行政が住民に対して避難措置aを行った場合の効用の期待値$E_\gamma[u(a) \mid \xi]$は式(3.9)より

$$E_\gamma[u(a) \mid \xi] = \sum_{\tau \in \Gamma_{T\xi}} \{u(y_1, a)(1 - P_{\tau \xi}) + u(y_2, a)P_{\tau \xi}\}P_\gamma(\tau \mid \xi) \tag{4.1}$$

となる。そのため、式(3.12)より、社会的効用は

$$U(a, P_\gamma) = \sum_{\tau \in \Gamma_{T\xi}} \{u(y_1, a)(1 - P_{\tau \xi}) + u(y_2, a)P_{\tau \xi}\}P_\gamma(\tau \mid \xi) \tag{4.2}$$

と表すことができる。

4.1.2 ベイズルールに基づく意思決定

観測情報ξが得られた際、行政がベイズルールに従って避難指示に関する意思決定を行う場合を考える。この時、行政は崩火口の位置T_{ξ}に関する確率分布の集合$\Gamma_{T\xi}$の各々の要素γに対して、主観的に確率分布がγになる確率を与える。この主観的な確率に対して平均的に見ると最もうまく機能する避難措置を選択をすることが求められる。$\Gamma_{T\xi}$上的主観的確率をπで表現すると、

$$\sup_{a \in A} \int U(a, P_\gamma) d\pi(\gamma) \tag{4.3}$$
を満たす避難措置を選択することがベイズルールに基づいて意思決定を行う場合では最適である。ベイズルールに基づく最適な避難措置方法を\(a_b \)とし、簡略化の条件の下でベイズルールに基づく意思決定を定式化すると、次のように表すことができる。

\[
a_b = \arg\max_{a \in A} \int \left[\sum_{\tau \in T_\xi} \{ u(y_1, a)(1 - P_{\tau \xi}) + u(y_2, a)P_{\tau \xi} \} P_{\gamma}(\tau \mid \xi) \right] d\pi(\gamma) \tag{4.4}
\]

観測情報\(\xi \)が得られた際の噴火口の位置に関する確率分布の集合\(\Gamma_\xi \)及びそれに対する主観的確率\(\pi \)がどのようなものである場合も、式（4.4）の解がベイズルールに基づいた場合の最適な避難措置方法である。ベイズルールでは、噴火口の位置に関する確率分布の集合\(\Gamma_\xi \)に対して主観的確率分布をどのように置くかが重要であるといえる。

4.1.3 マキシミン基準に基づく意思決定

噴火口の位置\(T \)に関する確率分布の集合\(\Gamma_T \)のうち、特定の一つの確率分布に対して最もうまく機能する避難措置方法を選択する意思決定の基準には、第3章で取り上げたミニマックス・レグレット基準の他にマキシミン基準というものがある。観測情報\(\xi \)が得られた際、マキシミン基準に基づく避難措置は次の式（4.5）に基づいて選ぶことができる。

\[
\sup_{a \in A} \inf_{\gamma \in \Gamma_T} U(a, P_{\gamma}) \tag{4.5}
\]

マキシミン基準は噴火口の位置に関する確率分布を社会的効用が最も小さくなるように想定して、その確率分布に対して最も社会的効用を大きくする避難措置方法を選択するという意思決定基準である。この時、簡略化の条件を用いると、社会的効用の最小値は

\[
\inf_{\gamma \in \Gamma_T} U(a, P_{\gamma}) = \inf_{\gamma \in \Gamma_T} \sum_{\tau \in T} \{ u(y_1, a)(1 - P_{\tau \xi}) + u(y_2, a)P_{\tau \xi} \} P_{\gamma}(\tau \mid \xi) \tag{4.6}
\]

で表される。この社会的効用を最小にするには、\(u(y_1, a)(1 - P_{\tau \xi}) + u(y_2, a)P_{\tau \xi} \)が最も小さくなる噴火口の位置\(t = \tau^*_m \)に対して\(P_{\gamma}(\tau^*_m \mid \xi) = 1 \)となる確率分布を想定すれば良い。よって、マキシミン基準に基づく避難指示意思決定の式（4.5）は次のように表すことができる。

\[
\sup_{a \in A} \{ u(y_1, a)(1 - P^m_{\tau \xi}) + u(y_2, a)P^m_{\tau \xi} \} \tag{4.7}
\]
ただし，\[P_{\tau \xi}^m = P(s > s_{m\xi} | \xi) \] とする．以上より，マキシミン基準に基づいて避難指示意思決定を行う場合での最適な避難措置方法を \(a_{mm} \) とすると，

\[
a_{mm} = \arg \max_{a \in A} \{ u(y_1, a)(1 - P_{\tau \xi}^m) + u(y_2, a)P_{\tau \xi}^m \} \tag{4.8}
\]

と表される．

4.2 3つの意思決定基準の比較

本章ではこれまで，ベイズルールとマキシミン基準という2つの意思決定基準に基づいた場合の避難指示意思決定を示した．ベイズルールは噴火口の位置に関する確率分布に対して主観的に確率を与えることで，各々の確率分布がに対する社会的効用の平均値が最も大きくなる避難措置方法を選択するという意思決定基準であった．ベイズルールに基づいた場合に考えられる噴火口の位置に関する確率分布の数は \(\Gamma_{r\xi} \) 内の全ての要素の数であるため，観測情報から考ええる全ての噴火口が噴火口となる可能性を残したまま，行政は避難措置方法を選択しなくてはならない．これでは，噴火口が火山の近隣地域の至ところで想定されていることになるため，行政としても地域ごとに避難指示意思決定を行うことが困難であるといえる．また，このような想定に基づいた意思決定が的確であり，ネイマン・ピアゾンが示したような意思決定の失敗が生じる可能性を低くできることは考えにくい．そのため，火山の噴火発生前における避難指示意思決定の基準としてベイズルールは適していないと考えられる．

一方で，ミニマックス・レグレット基準とマキシミン基準に基づく場合では，噴火口の位置の確率分布をある一箇所の噴火口から確率1で噴火するものを想定している．しかし，想定する噴火口の位置がどのようにして決まるのかは二つの意思決定基準で異なっている．

本章において定めた条件で，ミニマックス・レグレット基準で想定される確率分布で確率1で発生すると考えられる噴火口及びミニマックス・レグレット基準での最適な避難措置を定式化すると，式（3.15），（3.17）より次のようになる．

\[
\tau_{m\xi}^* = \arg \max_{\tau \in \Gamma_{r\xi}} \{ u(y_1, a^*) - u(y_1, a) \}(1 - P_{\tau \xi}) + \{ u(y_2, a^*) - u(y_2, a) \}P_{\tau \xi} \tag{4.9}
\]

\[
a_{m\xi} = \arg \max_{a \in A} \{ u(y_1, a)(1 - P_{\tau \xi}^m) + u(y_2, a)P_{\tau \xi}^m \} \tag{4.10}
\]

21
ただし，式（4.9）における \(a^*\) 及び式（4.10）における \(P_{\tau_\xi}^{mmr}\) は次のように表される。

\[
a^* = \arg \max_{a \in A} \sum_{\tau \in T_\xi} \{u(y_1, a)(1 - P_{\tau_\xi}) + u(y_2, a)P_{\tau_\xi}\}P_\gamma(\tau | \xi) \tag{4.11}
\]

\[
P_{\tau_\xi}^{mmr} = P(s > s_{\tau_\xi}^{mmr} | \xi) \tag{4.12}
\]

一方，マキシシム基準に基づいた場合では，

\[
\tau^*_\text{mm} = \arg \min_{\tau \in T_\xi} \{u(y_1, a)(1 - P_{\tau_\xi}) + u(y_2, a)P_{\tau_\xi}\} \tag{4.13}
\]

\[
a_{\text{mm}} = \arg \max_{a \in A} \{u(y_1, a)(1 - P_{\tau_\xi}^{\text{mm}}) + u(y_2, a)P_{\tau_\xi}^{\text{mm}}\} \tag{4.14}
\]

と表すことができた。式（4.10），（4.14）を比較すると，想定されている噴火口の位置がそれぞれ \(\tau^*_\text{mmr}，\tau^*_\text{mm}\) と異なるだけで，両意味決定基準とも期待効用理論に基づいて避難措置を選択していることがわかる。それに対して，式（4.9），（4.13）を比較するとミニマックス・レグレット基準とマキシシム基準では異なることがわかる。

まず，ミニマックス・レグレット基準で想定される噴火口の位置について，ここでは示す。ミニマックス・レグレット基準に基づく場合では想定される噴火口の位置の数は1つであり，その想定される噴火口の位置 \(\tau^*_\text{mmr}\) は式（4.9）で表される。また，観測情報 \(\xi\) が得られた際に考え得る噴火口の位置の集合 \(T_\xi\) について，

\[
t^1 \equiv \arg \inf_{\tau \in T_\xi} P_{\tau_\xi} \quad 及び \quad t^2 \equiv \arg \sup_{\tau \in T_\xi} P_{\tau_\xi}
\]

と定めることにする。\(t^1\) は観測情報 \(\xi\) から考え得る噴火口の位置の集合のうち，最も被害が及ぶ可能性が低いと考えられる地点であり，\(t^2\) は観測情報から考え得る最も被害が及ぶ可能性が高いと考えられる地点である。

観測情報 \(\xi\) から考え得る \(T_\xi\) に対する全ての確率分布 \(\gamma\) において，\(a^* = a_1\) である時は，式（4.9）は次のように表すことができる。

\[
\tau^*_\text{mmr} = \arg \max_{\tau \in T_\xi} \{(u(y_1, a_1) - u(y_1, a_2))(1 - P_{\tau_\xi}) - (u(y_2, a_2) - u(y_2, a_1))P_{\tau_\xi}\} \tag{4.15}
\]

噴火時の避難指示意思決定では，意思決定対象である地域に噴火の被害が及ばない時に，避難指示を出していることにより経済的な損害を受ける失敗を犯した場合の後悔よりも，噴火の被害が及ぶ時に，避難指示を出していないことにより住民の生命に関わる損害を受ける失敗を犯した場合の後悔の方が大きいと考えられる。そのため，\(u(y_1, a_1) - u(y_1, a_2) < u(y_2, a_2) - u(y_2, a_1)\) が成立する。よって，観測情報 \(\xi\) か
ら考え得るT_ξに対する全ての確率分布γにおいて、最適行動が$a^* = a_1$である場合、式 (4.15) より想定する噴火口の位置は$\tau_{mnr}^* = t^1$となる。

観測情報ξから考え得るT_ξに対する全ての確率分布γにおいて、$a^* = a_2$である時は、式 (4.9) は次のように表すことができる。

$$\tau_{mnr}^* = \arg\max_{\tau \in T_\xi} \{-\{u(y_1, a_1) - u(y_1, a_2)\}(1 - P_{r\xi}) + \{u(y_2, a_2) - u(y_2, a_1)\}P_{r\xi}\}$$ (4.16)

よって、観測情報ξから考え得るT_ξに対する全ての確率分布γにおいて、最適行動が$a^* = a_2$の時、式 (4.16) より想定する噴火口の位置は$\tau_{mnr}^* = t^2$となる。

一方で、観測情報ξから考え得る噴火口の位置の集合T_ξに対する確率分布の集合Γ_{T_ξ}において、最適行動が$a^* = a_1$となる確率分布と、最適行動が$a^* = a_2$となる確率分布のどちらも含まれている場合では、想定する噴火口の位置は

$$\tau_{mnr}^* = \begin{cases}
t^1 & E[u(a_1) - u(a_2) | \xi, t^1] > E[u(a_2) - u(a_1) | \xi, t^2] \text{の時}
t^2 & E[u(a_1) - u(a_2) | \xi, t^1] \leq E[u(a_2) - u(a_1) | \xi, t^2] \text{の時} \end{cases}$$ (4.17)

と表すことができる。式 (4.17) はΓ_{T_ξ}内の全ての確率分布γにおいて、最適行動が$a^* = a_1$の場合、及び最適行動が$a^* = a_2$の場合のどちらでも成り立つので、式 (4.17) によってミニマックス・レグレット基準において想定される噴火口の位置が表われている。$E[u(a_1) - u(a_2) | \xi, t^1]$は得られた観測情報から考え得る噴火の被害が及ぶ確率が最も低い地点が噴火口である時、避難指示を出していない場合と出した場合との効用の差の期待値であり、$E[u(a_2) - u(a_1) | \xi, t^2]$は得られた観測情報から考え得る噴火の被害が及ぶ確率が最も高い地点が噴火口である時、避難指示を出した場合と出していない場合との効用の差の期待値である。喷火口の位置はこれら二つのうち、どちらが大きいかに応じて決められる。

次にマキシミン基準に基づいて意思決定を行う場合について記述する。観測情報ξが得られたとする。噴火口がτであると想定した場合に噴火の被害が意思決定対象の地域に及ぶ確率$P(s > s_r | \xi) = P_{r\xi}$が大きくなるにつれて、避難指示を出した時の期待効用は大きくなる。避難指示を出していない時の期待効用は小さくなる。よって、マキシミン基準において想定される噴火口の位置は、

$$\tau_{mnr}^* = \begin{cases}
t^1 & E[u(a_1) | \xi, t^2] > E[u(a_2) | \xi, t^1] \text{の時}
t^2 & E[u(a_1) | \xi, t^2] \leq E[u(a_2) | \xi, t^1] \text{の時} \end{cases}$$ (4.18)

23
と表すことができる。$E[u(a_2) | \xi, t_1]$ は得られた観測情報から考えられる噴火の被害が及ぶ確率が最も低い地点が噴火口である時、避難指示を出した場合の期待効用であり、$E[u(a_1) | \xi, t_2]$ は得られた観測情報から考えられる噴火の被害が及ぶ確率が最も高い地点が噴火口である時、避難指示を出していない場合の期待効用である。噴火口の位置はこれから二つのうち、どちらが大きいかに応じて決めるされる。

式 (4.17) と式 (4.18) において、想定する噴火口の位置が観測情報 ξ から考えられる噴火口の集合 T_ξ の中で、意思決定対象の地域に被害が及ぶ確率が一番高くなる地点 t^2 となる時の条件を比較する。

$$S_{mnr} = E[u(a_1) - u(a_2) | \xi, t_1] - E[u(a_2) - u(a_1) | \xi, t_2]$$
$$S_{mm} = E[u(a_1) | \xi, t_2] - E[u(a_2) | \xi, t_1]$$

(4.19)
(4.20)

すると、ミニマックス・レグレット、マキシシオンの両基準に基づいて意思決定を行う場合、想定される噴火口の位置が t^2 となる条件はそれぞれ、$S_{mnr} \leq 0$, $S_{mm} \leq 0$ で表される。この時、式 (4.19) と式 (4.20) との差は、

$$S_{mnr} - S_{mm} = E[u(a_1) | \xi, t_1] - E[u(a_2) | \xi, t_2]$$

(4.21)

で表される。$E[u(a_1) | \xi, t_1]$ は得られた観測情報から考えられる噴火の被害が及ぶ確率が最も低い地点が噴火口である時、避難指示を出していない場合の期待効用であり、$E[u(a_2) | \xi, t_2]$ は得られた観測情報から考えられる噴火の被害が及ぶ確率が最も高い地点が噴火口である時、避難指示を出した場合の期待効用である。噴火口の位置を t^2 と想定する条件の厳しさは式 (4.21) の正負によって決まる。仮に、式 (4.21) の右辺が0より大きい場合は、噴火口の位置に t^2 を想定する条件はミニマックス・レグレット基準の方が厳しく、一方、式 (4.21) の右辺が0より小さい場合は、噴火口の位置に t^2 を想定する条件はマキシシオン基準の方が厳しく、もし、住民に対して避難指示を出していない状態で噴火の被害が及ぶ場合では人の生命に関わる致命的な損害を受けることになるため、その時の効用 $u(y_2, a_1)$ の大きさを負の無限大と設定し、おかつ $P_{0 \xi} > 0$ とすると、式 (4.21) の右辺は0より小さくなる。この時、マキシシオン基準の方がミニマックス・レグレット基準よりも噴火口の位置に t^2 を想定する条件は厳しくなる。ゆえに、同じ観測情報が得られたとしても、ミニマックス・レグレット基準に基づいて避難指示意思決定を行う場合の方が、マキシシオン基準に基づいて避難指示意思決定を行う場合よりも多くの場合において噴火被害の及ぶ可能
性が高い地点を噴火口として想定しているといえる。意思決定者である行政は噴火発生前の意思決定場面では、経済的な損失や避難所での生活が長引かせないことを最重視するのではなく、住民の生命を噴火災害から守ること、これを第一の目的とするべきである。そのため、噴火の被害が及ぶ可能性が高い噴火口を多くの場合想定しているミニマックス・レグレット基準に従って避難指示意思決定を行うことが人命に関わる不確実性下での意思決定では合理的であるといえる。

4.3 社会的な合理性に関する考察

本稿では、現在の観測技術ではどのように避難指示に関する意思決定を行うことが合理的であるのか考察、説明を行ってきた。火山の噴火が発生する前の段階では、どの避難措置方法を行うかを決める時には噴火口の位置がどこになるのか確率を判断することができないため、行政は不確実性下での意思決定を行わなくてはいけない。このような場合はミニマックス・レグレット基準やマキシミン基準のような何らかの基準によって、噴火口の位置を一時的に想定して、その噴火口から噴火が発生するならば、どの避難措置方法を住民に対して行うべきかを決めればよかった。

仮に、火山の観測技術が十分に発展し、噴火に関しての基礎研究も十分に進展しており、噴火ハザードに関しての不確実性はなくなり、噴火が発生する位置や規模、様式や推移を完全に、確率1で予測することができるならば、行政はその科学的な予測を信頼し、最適な避難措置を住民に対して行えることができる。そもそも、どのようにして避難措置方法を選択するかという意思決定の問題になりすぎるまい。予測に従って行動することが合理的である。しかし、現在の技術ではそのような完全な予測ができないから避難指示に関する意思決定が問題になっているといえる。そのため、噴火が発生する前の段階では、噴火の被害を受け、人の生命に関わる致命的な損害が生じることを避けるためにも、ミニマックス・レグレット基準に基づいて避難措置方法を選択することが合理的であるといえる。

行政が住民に対して避難措置を出すという行為は、行政が住民の代わりに避難に関する意思決定を行っているといえる。そのため、住民が意思決定に対して何を望んでいるかによって、意思決定の内容も変化する。たとえば、多くの住民が避難生活が長引くことを被災のリスクを受け入れることよりも嫌う場合は、行政は住
民に対して避難するように指示することを噴火の危険が確信できるまで踏まえうか
もちろない。一方で予防原則的に、噴火災害には、生命に関わる深刻かつ加速な
リスクが存在しているため、少しでも危険を察知することができたならば、科学
的な証拠が不十分であるからといって避難することを控えるべきではないと多く
の住民が考えているならば、早い段階において、行政によって避難するよう指示が
出されるだろう。式(4.17)や式(4.18)を見ても効用の大きさによって、噴火確率の高
い地点を想定するか、喷火確率の低い地点を想定するのかを決める条件が変わっ
ていくことがわかる。藤垣17)が述べるように、不確実な自然災害に対してどのよう
に避難するかという社会的な意思決定の特性は、専門家だけでは答えが出せない
ところで意思決定をしなくてはならないことであるといえる。このような科学の
枠を越えた問題に対して科学的な専門家が行わなくてはならないことは、どこま
での領域を科学的に対処することができるのか、どこからは科学の枠を越えて考
える必要があるのかを明白にすることである18)。専門家と非専門家（市町村長や市
民）との間でのリスクに関するコミュニケーションが自然災害の発生する前に行わ
れ、災害発生時には行政によりスムーズな対応ができるようにしておくことが望
まれる。
第5章 おわりに

本研究では、喷火事象に対して確率モデルを想定するのは不確実性があるため
に困難であること、意思決定を行うにあたり、全ての噴火事象を想定することは不
可能であるため、少なくともワーストシナリオを想定しておくことが必要である
ことを示した。

また、本研究ではミニマックス・レグレットモデルを用いて、火山の噴火が発生する
前の段階における住民への避難指示に関する意思決定をモデル化した。ミニマックス
ス・レグレットモデルでは、意思決定者たる行政は、噴火口の位置が確認していな
い災害発生初期の段階では、避難指示意思決定によって生じる後悔が最も大きくな
る噴火口の位置に関する確率分布を想定しておくなければならない。結果として、
意思決定によって生じる後悔が最も大きくなる時の噴火口の位置に関する確率分
布は、ある一つの噴火口の位置に対して確率1を与える分布であった。そのため、ミ
ニマックス・レグレット基準に基づいて避難指示意思決定を行う場合は、意思決定に
よって生じる後悔が最も大きくなる噴火口の位置を想定して、その噴火口から噴火
すると考えた時、後悔が最も小さくなるような避難措置方法を住民に対して行う
ことが合理的である。

また、喷火発生前におけるベイズルールとマキシミン基準に基づく避難指示意
思決定をミニマックス・レグレット基準に基づく避難指示意思決定と比較した。ベイ
ズルールに基づいて意思決定を行う場合は、噴火口の位置に関する確率分布に対
して主観的な確率を定めていた。このベイズルールに基づいて意思決定を行う場
合は、特定の噴火口の位置が想定できないので、的確な避難指示を住民に行うこ
とが困難であり、噴火災害時の避難指示意思決定の基準には向いていないことを
示した。マキシミン基準に基づいて意思決定を行う場合は、ある一つの噴火口の
位置に対して確率1になる確率分布を想定していた。

また、観測情報から考えられる噴火口の位置の集合に対して、噴火の被害を受け
る確率が最も高くなる噴火口の位置を想定するのが合理的である条件は、噴火の
被害が及ぶ可能性があり、人命に関わる被害を受ける時の効用の大きさが負の無
限大である場合を考えるとミニマックス・レグレット基準よりマキシミン基準の方
が厳しいものであった。そのため、災害時の意思決定では人の生命を守ることを第一の目標として考えられるので、火山噴火の発生する前での避難指示意思決定ではミニマックス・レグレット基準に基づくのが合理的だといえる。

本研究では、噴火が発生する前に火山を観測することによって情報が得ることができ、それに応じた避難指示に関する意思決定が可能であるため、火山の噴火を対象として意思決定に関する研究を行った。火山の噴火以外の自然災害、たとえば、地震や土砂災害、洪水や津波等を対象とした場合でも本稿で示した意思決定基準は適応できるのか、すなわち、自然災害を一般化した上で意思決定に対する体系を構築することができるのか検討をしていく必要があるといえる。以上に述べた分析及び考察を行っていくことを今後の本研究における課題として、本稿の結びとしたい。
参考文献

2) 火山噴火予知連絡会 火山活動評価検討会：中長期的な噴火の可能性の評価について－監視・観測体制の充実等の必要な火山の選定－，http://www.seisvol.kishou.go.jp/tokyo/STOCK/kaisetsu/CCPVE/CCPVE07.html，2013年1月にアクセス。

10) 藤本隆志，伊藤邦武（編）: 分析哲学の現在，世界思想社，1997.
誠解説: 最悪のシナリオ巨大リスクにどこまで備えるのか，みすず書房，2012.)

13) Loomes, G. and Sugden, R.: A Rationale for Preference Reversal，*The American Economic Re-
view*，Vol.73，No.3，pp.428-432，1983.

15) 有珠火山防災会議協議会（伊達市・洞爺湖町・壮瞥町・豊浦町）: 有珠火山防災計画，
http://www.city.date.hokkaido.jp/soumu/n96bln0000008f7h-att/n96bln0000008f9h.pdf，2013年
1月にアクセス。

付録A 避難計画に関する提言

本稿で示したミニマックス・レグレット基準に基づいた避難指示の計画を立てる際の流れを図−A.1に示す。

図−A.1 噴火発生までの避難計画

異常現象が発生し、噴火が発生する可能性が確認されると、噴火口の位置が確定される前の段階では避難指示を行うために観測情報から噴火口の位置を想定を行わなくてはならない。想定するべき地点は、観測情報から考えられる、意思決定対象となる地点に最も噴火の被害が及ぶ確率が高い地点、もしくは意思決定対象となる地点に嘔火の被害が及ぶ確率が最も低い地点である。その条件式式 (4.17) で決まる。

事態が進行し、噴火が発生もしくは嘔火発生直後、噴火口の位置が確定されると、嘔火規模の確率分布に応じて期待効用が高まる避難措置方法を住民に対して行う。
付録B 第4章の補足説明

ここでは、ミニマックス・レグレット基準とマキシシング基準の比較について、第4章の補足的な説明を行うことを目的とする。ミニマックス・レグレット基準では\(a^*\)は喫火口の位置に関する確率分布が\(\gamma\)である時の最適な避難措置であった。観測情報\(\xi\)から考え得る\(T_\xi\)に対する全ての確率分布\(\gamma\)において、\(a^* = a_1\)である場合には、想定する喫火口の位置は式(4.15)より\(t^1\)であり、観測情報\(\xi\)から考え得る\(T_\xi\)に対する全ての確率分布\(\gamma\)において、\(a^* = a_2\)である場合には、想定する喫火口の位置は式(4.16)より\(t^2\)であった。一方、観測情報\(\xi\)から考え得る喫火口の位置の集合\(T_\xi\)に対する確率分布の集合\(\Gamma_{T_\xi}\)において、最適行動が\(a^* = a_1\)となる確率分布と、最適行動がとなる確率分布のどちらも含まれている場合を考える。最適行動が\(a_1\)の時は\(t^1\)、最適行動が\(a_2\)の時は\(t^2\)をミニマックス・レグレット基準では想定しているので、式(4.9)より

\[
\tau^*_{mnr} = \arg \max_{\tau \in T_\xi} \{ E[u(a_1) - u(a_2) \mid \xi, t^1], E[u(a_2) - u(a_1) \mid \xi, t^2] \} \tag{B.1}
\]

から想定する喫火口を決定することができる。式(B.1)を場合分けしたものを、式(4.17)で表している。

マキシシング基準では式(4.13)に基づいて喫火口の位置が想定された。すなわち、観測情報\(\xi\)から考え得る喫火口の位置の集合\(T_\xi\)内で期待効用が最も小さくなる喫火口の位置を想定する必要があった。図4.1に\(P_{\xi T^{1}}\)と\(P_{\xi T^{2}}\)の期待効用の最小値が等しくなる時を示す。図4.1より\(T_\xi\)内で期待効用が最小になるのは、喫火口の位置\(t^1\)を想定した時に避難措置\(a_2\)を行った場合か、喫火口の位置\(t^2\)を想定した時に避難措置\(a_1\)を行った場合である。\(E[u(a_1) \mid \xi, t^2] \leq E[u(a_2) \mid \xi, t^1]\)よりも大きい時は、喫火口の位置\(t^1\)を想定して避難措置\(a_2\)を行った場合の期待効用が\(T_\xi\)の中で最も小さくなる。そのため、想定される喫火口の位置は\(t^1\)である。また、\(E[u(a_2) \mid \xi, t^1] \leq E[u(a_1) \mid \xi, t^2]\)よりも大きい時は、喫火口の位置\(t^2\)を想定して避難措置\(a_1\)を行った場合の期待効用が\(T_\xi\)の中で最も小さくなる。そのため、想定される喫火口の位置は\(t^2\)である。以上より、マキシシング基準では、式(4.18)の条件によって喫火口を想定することになる。
図-4.1 期待効用の最小化
謝 辞

本研究を遂行するにあたって、多くの方々にご指導・ご協力を頂きました。ここに心より感謝の意を表します。京都大学大学院工学研究科の小林潔司教授には、ご多忙の中、論文作成にあたり終始懇切丁寧なご指導を頂きました。また、本研究を遂行するにあたり多くのことを勉強する機会を頂き、私にとっては大変貴重な経験になりました。ここに心より深く感謝申し上げます。京都大学大学院工学研究科の松島格也准教授には、毎回の研究ゼミにおいて鋭いご指摘を頂きました。また研究に対する温かい心遣いも頂き、心より厚くお礼申し上げます。京都大学大学院工学研究科の大西正光助教には、日頃の研究生活の他、本研究の遂行に関わる基礎的な素養から細部の素養についても有益なご指導を頂きました。またご多忙の中、研究の相談にも多くの時間を割いて頂きました。心より厚くお礼申し上げます。京都大学大学院工学研究科の吉田護GCOE特定助教には、研究以外の話にも温かく相談に乗って頂きました。心より深く感謝申し上げます。京都大学大学院工学研究科の鰯鶴穂GCOE特定研究員には、研究室に入った当初から常に温かくご指導頂きました。ここに深く感謝の意を表します。環境防災総合政策研究機構の鶴見氏には、本研究の基礎となる危機管理に対する考え方や実際の現場での危機管理の問題点等、非常に多くのことを学ばせて頂き、大変貴重な経験となりました。ここに心より深く感謝申し上げます。国土技術研究センターの渋川勝己氏には、プロフェッショナルとしての姿勢や高い専門性に基づいた教養を学ばせて頂きました。ここに心より深く感謝申し上げます。国土技術研究センターの岡安徹也氏には、本研究の基礎となる考え方の理解にご指導、ご意見を頂きました。ここに心より深く感謝申し上げます。計画マネジメント論研究室の諸兄・諸先輩には、日頃から親身に相談に乗って頂き、温かい励ましの言葉やご指導を頂きました。ここに深く感謝の意を表します。秘書の藤本彩氏には、日頃から多くの事務上の手伝いの他、様々な場面においてご支援を受けました。心より深く感謝いたします。