災害リスクマネジメントと経済評価*

DISASTER RISK MANAGEMENT AND ECONOMIC EVALUATION *

小林潔司**· 横松宗太***

By Kiyoshi KOBAYASHI** and Muneta YOKOMATSU***

1. はじめに

伝統的な費用便益分析では、期待被害軽減額の現在価値を用いて防災投資の経済便益を評価してきた. 防災投資に関わる費用便益分析マニュアルにおいても期待被害軽減額の現在価値を用いることを推奨している. 期待被害額を用いた評価法は、小規模な危険事象が独立に多数生起するようなリスクを前提として開発されたものである. 自然災害の生起頻度は稀少であるが、一度災害が生じれば多くの家計や企業・組織が同時に被災し、被害規模が巨大になる危険性がある. 期待被害額を用いた評価法を巨大性・同時性を有する災害リスクの軽減を目的とする防災投資の経済評価に用いることには限界があろう. 災害リスクのカタストロフ性を考慮したような防災投資の経済評価の方法が必要となる1).

期待被害額を用いた経済便益の評価法は、災害保険により自然災害による被害がフルカバーされており、被災時に災害保険により被災者が被った損害が瞬時に修復されることを前提としている。さらに保険市場において給付・反給付の法則²⁾が成立し、防災投資の経済便益が家計が支払う保険料の節約額に等しくなるという理想的な状況を想定したものである。しかし、自然災害のようなカタストロフリスクに対して、このような災害保険を提供することは不可能であり、家計は災害保険による災害リスクをフルカバーすることはできない。

災害リスクを効果的に軽減するためには、耐震強化投資や治水事業に代表されるリスク・コントロールと災害保険等によるリスク・ファイナンスの双方が必要である.防災投資は災害リスクを減少させるリスク・コントロール技術である.一方、リスク・ファイナンス技術の著しい発展により、保険金支払いの原資拡大と災害保険料率の低減が可能になった.災害保険市場の拡大は、地域住民の防災意識と自己防災の向上をもたらす可能性がある.このような観点から、リスク・コントロール技術とリスク・ファイナンス技術を同時に考慮した望ましいリスク・マネジメント体系を確立することが重要である.

期待被害額を用いた費用便益分析は、リスク・コントロール技術による災害リスク減少の経済便益を評価する方法である.費用便益分析の導入により、防災投資の合理化が期待できる.今後、さらに費用便益分析の枠組みを拡大し、地域住民の自己防災行動をも射程に含めた総合的な災害リスク・マネジメント体系の確立と地域住民とのリスク・コミュニケーションに資するような防災投資の経済便益の評価法を開発する必要がある.本稿では災害リスクのカタストロフ性を考慮したような費用便益分析の基本的な考え方を提示するとともに、今後の研究課題をとりまとめる.

2. カタストロフ・リスクの経済評価

(1) 従来の研究概要

不確実性下における経済便益評価に関しては膨大な理論的・実証的な研究蓄積がある³⁾. それらの研究系譜に関しては、すでに上田⁴⁾、多々納⁵⁾等が詳細に検討しており、改めて言及する必要はないだろう. これら既存の便益評価指標は、1)危険事象の小規模性、2)危険事象の独立な到着という前提のもとで導出されたものである. 一方、自然災害が生起する確率は極めて稀少であるが、一度生起すれば多くの家計が同時に被災し巨大な被害が生じる危険性がある. 同時性、巨大性という特徴を持つカタストロフ・リスクを対象とした経済便益指標に関しては、ほとんど研究が蓄積されていない.

集合リスクに関しては、個人間におけるリスクの最適配分に関する研究がある⁶). 社会全体でのリスク回避便益は個々人のリスク回避便益を相関構造を考慮しながら集計化することにより定義される. しかし、カタストロフ・リスクは、多くの個人が同時に被災するという特徴がある. 社会全体がカタストロフ・リスクに直面する場合、社会のリスク回避便益を個々人のリスク回避便益の和として単純に表現することはできない. 一方、非可逆的なカタストロフ・リスクの回避便益をとりあげた研究がある⁷). 例えば、重大な原子力事故等のカタストロフが生じれば、すべての家計が同時に死亡するという危険性がある. カタストロフ回避の問題は代表的個人の死亡回避の問題に置換され、代表的個人の行動分析を通じてカタストロフ回避便益を計測している. 事故が発生すれば社会全体が消滅することを想定しているため、カタストロフ・リスク

^{*}キーワーズ:経済便益評価,防災,リスクマネジメント

^{**}フェロー会員 工博 京都大学大学院工学研究科土木工学専攻 (〒606-8501 京都市左京区吉田本町 TEL/FAX 075-753-5071) ***正会員 工修 鳥取大学工学部社会開発システム工学科 (〒680-0945 鳥取市湖山町南4丁目101 TEL 0857-31-5311 FAX 0857-31-0882)

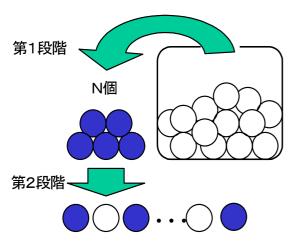


図-1 災害リスクの構造

の配分方法を議論する余地はない.

災害保険に関しては保険料率の算定をはじめ保険論の分野で研究が蓄積されている8). 特に,災害保険に関して多くの実績があるアメリカ合衆国では,災害保険市場,再保険市場の構造に関して理論的・経験的な研究が展開されており,その結果は参考文献9)に詳しい. そこでは災害保険を損害保険商品として位置づけており,伝統的な損害保険市場の分析の枠組みから出るものではない. そもそも,カタストロフ・リスクのファイナンス方法に関する理論的な分析枠組みが欠如してきたこともあり,大規模性・巨大性を有するカタストロフ・リスクに対する災害保険市場の構造に関する研究は見いだせないのが実状である.筆者等の知る限り,大規模性・巨大性を有するカタストロフ・リスクの社会的配分とそれに基づいた防災投資の経済価値の計測問題にアプローチした研究は先例がない.

(2) カタストロフ・リスク

筆者ら 10)は同時性・巨大性を持つカタストロフ・リスクを図 $^{-1}$ に示すような「 2 段階くじ」で表現できることを示した、「 2 2段階くじ」の第 1 2段階目の「くじ」では「被災する家計の総数(言い換えれば,富の総損失額)」が「くじ」により選ばれる。第 2 2段階目の「くじ」では,第 1 1段階で決まる被災者数の中から,実際に被災する家計が無作為に選ばれる。すなわち,自然災害リスクの特徴は,個々の家計が直面する個人リスク(第 2 2段階目のリスク)と社会全体が直面する集合リスク(第 1 1段階目のリスク)により構成される複合的な 2 2段階のリスクとして表現される点にある(1 1分配。のちに 2 5。において,災害リスクを 2 2段階くじを用いて表現したような一般均衡モデルについて言及する。

伝統的な損害保険は個人リスクを対象とするものである. 個々の家計がそれぞれランダムに損害を被る場合, 個人リスクを家計全体でプールすることができる. この場合, 大数の法則により, 社会全体の総期待被害額の時間を通じた分散は非常に小さくなり, 集合リスクは著しく減少する. 集合リスクが存在しない理想的な状況においては,

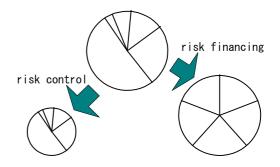


図-2 リスクマネジメント手法の比較1)

個々の家計の被害リスクの軽減効果を期待被害額の変化により評価できる.しかし、同時性・巨大性を持つ災害リスクの場合、集合リスクを表す「第1段階目のくじ」が問題となる.多くの保険加入者が同時に被害を被った場合、保険加入者全体の富が減少するため、保険加入者による相互保険は有効に機能しない.カタストロフな被害が生じた場合、家計が互いに助け合うことには限界が生じ、社会全体として大きなロスが生じる.

社会全体で生じる巨大な集合リスクをヘッジするためには、対象地域の家計や災害保険の加入者だけによる相互補助だけでなく、より広範囲の地域における家計や企業の間でリスクを分散するシステムが必要となる。後述するように、近年のファイナンス技術の発達により、国際資本市場を通じて災害リスクを分散することが可能となってきた。被害が巨大であるほど、災害リスクをヘッジするためにより多くの費用を要することになる。防災投資の経済便益は、防災投資が存在しなかった場合に存在するカタストロフ・リスクを国際資本市場でヘッジする際に要する費用を用いて評価できる。

(3) リスク・マネジメント技術

災害リスクを制御する方法として、1)災害リスク事 象の生起確率そのものを減少させる技術(リスク・コント ロール), 2) 災害により生じた被害を社会全体に分散さ せる技術(リスク・ファイナンス)がある. 防災投資は災 害の生起確率や被害額を減少させるリスク・コントロー ルである. 緊急時における避難・誘導システムや交通・情 報・通信システムの管理・運営技術、復旧マネジメント 手法も重要なリスク・コントロールである。一方、災害保 険等によるリスク・ファイナンスはリスクを分散する手段 である. 災害が生じた場合、保険金の支払いにより被災者 とそうでない家計の間で富の再配分が行われる.しかし、 被災者に保険金の支払いが行われたとしても、社会全体 で生じた富の総損失額が変化するわけではない. 被害額 が他人に移転しただけである. 筆者ら¹⁾はリスク・コント ロール技術とリスク・ファイナンス技術の違いを図-2を 用いて説明している. 同図において, 円の大きさは社会 全体での富の損失を表す. リスク・コントロール技術は社 会全体で生起する富の損失の減少をもたらす. 一方, リス ク・ファイナンス技術は災害により生じる被害を家計間で分散する. ある特定の被害者に被害が集中した場合,被害者が被る心理的被害は膨大なものになるだろう. しかし,被害を多くの家計の間で分散すれば,個々の人間が被る心理的被害はわずかなものですむ. 期待被害額を用いた便益評価は,図-2における円の大きさのみに着目しており,個人が被る心理的被害には関心を払わない. 期待被害額を用いる限り,リスク・ファイナンスによる心理的被害の減少効果は評価されない.

3. 防災投資の経済評価の諸問題

(1) 期待被害額評価の限界

伝統的な費用便益分析では, 防災投資便益を期待被害 額の減少効果で評価する. この方法が正当化されるため には、1) 家計が被った被害が災害保険によりフルカバー され,2)災害で生じた被害が保険金の支給により瞬時に 元の状況に復元でき、3)災害保険市場において給付・反 給付の原則²⁾(保険料が期待保険金額に一致するという原 則)が成立する、という3つの条件が成立していることが 前提となる. リスク・ファイナンス技術の発展により, 災 害保険料をある程度低減できよう. しかし, 災害リスクは 保険会社にとってもやはり危険なリスクであり、保険料に は期待保険金額の他に保険会社のリスク・プレミアム(保 険会社がリスクを避けるために必要とする安全率) が加算 される. すなわち、給付・反給付の原則が成立しない 10 . 保険料が期待保険金額にある一定の割合(1以上)マー クアップされた水準に決定されるため、家計にとって災 害保険は常に割高な商品となりフルカバーの災害保険を 購入しようとするインセンティブは存在しない1). 災害に よる被害が災害保険によりフルカバーされていない以上, 家計は期待被害額で評価される以上の心理的被害リスク に直面することとなる. 防災投資便益を直接的な富の損 失だけでなく, 心理的被害の軽減効果をも含めて評価する 場合、災害により生じた被害を「誰が負担するのか」とい う問題を避けて通ることができない.

(2) 心理的被害とリスク・プレミアム

期待被害額に基づいた防災投資の経済評価における問題点を明らかにするために、永久に同一の画地上に住み続ける家計の行動を考えよう¹¹⁾. 家計は家屋や家財等の物的資産と金融資産という2種類の資産を用いて富を蓄積する. 家計は災害による被災リスクを災害保険によりへッジする. 災害が生じれば、家屋の損壊や家財の損失により物的資産に被害が生じる. 災害により物的資産を喪失した場合、家計の物的資産と金融資産の蓄積過程は修正を余儀なくされる. 家計はそれ以降の人生設計を見直し、失った資産の回復に努めるだろう.

図-3に代表的家計の総資産の形成過程を示している. 経路 A は災害リスクが存在しない家計の総資産形成過程

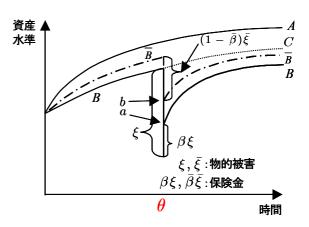


図-3 富の蓄積過程と経済便益

を示している. 災害リスクを持つ家計の資産形成経路 B は、災害保険料を支払うため経路 A より下方に位置する. 時刻θに災害が発生し、家計の総資産がξ単位だけ下方に ジャンプしたとしよう. ここで、1) 災害保険により被害 額が完全に補償される場合、2)被害額の一部のみが補償 される場合という2種類のシナリオを考える.まず、保険 金により被害額が完全に補償される場合を考える. その場 合, 家計の総資産の蓄積過程は, 時刻θ以降も災害が生起 しなかった場合と同様の経路(点線で表される経路C)上 を推移していく. つぎに、被害額が災害保険により完全に は補償されない場合を考えよう.経路B(実線)では、 ξ の被害に対して $\beta\xi$ (0 $\leq \beta \leq 1$) だけの保険金が支給され る場合の資産蓄積経路を示している. 家計は保険金と金 融資産の保有残高に基づいて、被災後の最適な物的資産 と金融資産の組み合わせを決定する. 資産の再配分の後, 点 a から被災後における資産形成過程が開始する. 家計の 資産形成経路は時刻 θ 以降、被災しない場合(経路C)よ りも常に下方に位置し、資産喪失の心理的被害が長期間 にわたって発生する. このような被災以降に生じる長期 的な資産喪失の効果を「事後的被害」と呼ぼう.

防災投資により時刻 θ に生じた被害が ξ から $\bar{\xi}(<\xi)$ に減少したと考えよう。災害保険により被害額が完全に補償される場合,防災投資の直接的な経済効果は災害保険料の減少として現れる。災害保険に給付・反給付原則が成立している場合,災害保険料の節約額は期待被害額の減少量に一致する。したがって,防災投資便益を期待被害額の減少額の現在価値で評価できる。つぎに,災害保険で完全には補償されない場合を考えよう。いま,保険金が $\bar{\beta}\bar{\xi}$ だけ支給されたとしよう。すなわち,災害時のネットの被害額は $(1-\bar{\beta})\bar{\xi}$ となる。この場合,被災後の資産は $\mathbf{2}-\mathbf{3}$ における点bより経路 \bar{B} (1点鎖線)に従って変化する。

この変化を大きく2つの成分に分解しよう。第1に防災投資により災害時の被害額が減少すれば,再出発点が上方に移動して災害時点以降の資産の蓄積過程に変化が生じる。すなわち「事後的被害の減少効果」が生じる.再び図-3の経路Bと \bar{B} を比較して欲しい.初期時点から時

刻θまでの資産形成の過程に関しても、防災投資がある場合とない場合では異なった経路を辿っている。防災投資により災害保険料が節約できれば、家計は節約額の一部を資産形成に充当することができる。このように、家計の物的資産形成が生涯にわたって増加する効果を「資産の高度化効果」と呼ぶ。当然のことながら、資産の高度化効果の中には災害保険料の節約効果が含まれている。

以上で述べたように、防災投資便益は災害保険の利用可能性に依存している。給付・反給付原則を満足する災害保険が完備されており、家計が災害リスクを十分に理解している場合、合理的な家計はフルカバーの災害保険を購入する。家計の災害リスクは災害保険により完全にヘッジされ、リスクのない資産形成が可能となる。防災投資による「事後的被害の減少効果」は存在しない。それに対して被害額を完全には担保できない場合、被災者は資産を元の状態に戻すことはできない。家計は災害リスクを除去することができず、防災投資便益として「事後的被害の減少効果」と「資産の高度化効果」が発生する。

家計がフルカバーの災害保険に加入するか否かは,災 害保険のリスク・プレミアムに大きく依存する. リスク・ プレミアムを,災害保険料を期待保険金額で除した値と 定義しよう. 災害保険に給付・反給付の原則が適用できる 場合にはリスク・プレミアムは最小値1をとる. 筆者らは, 家計がCobb=Douglas型効用関数を有する場合,「事後的 被害の減少効果」と「資産の高度化効果」の総和として表 される防災投資便益が, 従来の費用便益分析で用いられて きた期待被害軽減額に災害保険のリスク・プレミアムを乗 じた値に一致することを理論的に証明した¹¹⁾. この方法 は極めて簡便であり実用性も高い.しかし、わが国では 災害保険市場が未整備であり、現在のところ各地域にお ける現実の災害リスクを反映したリスク・プレミアムに 関する情報は得られないのが実状である. 近日中に保険 業界のビッグバンが実施され、災害保険の市場開放が急 速に進展することが予想される. 災害保険のリスク・プレ ミアムに関する情報が蓄積されれば、市場評価に基づいた 防災投資の経済評価が可能になるだろう.

(3) 将来リスクの割引率

防災投資便益を測定するためには、将来時点における リスクを現在価値で評価するための割引率が重要となる。 防災投資に限らず公共事業における割引率に関して多く の論議がある¹²⁾. 割引率に関わる詳細な議論は本稿の域 を越える. ここでは割引率に災害の生起確率を含めるべき か否かに関して言及しておこう. この問題は、対象とする リスクが「非可逆的」か否かに関係する. 非可逆的リスク とは、人命の損失や社会の喪失といった事象のように、一 度その事象が生起した場合、2度とは元に戻らないような リスクである.

筆者らは非可逆的リスクの割引率としては,防災投資 の経済便益を行うための主観的割引率として通常の主観 的時間選好率に死亡率(災害の到着率)を加算した一般化割引率を用いることが適切であることを指摘した¹³⁾. 一方,災害が終了した後も人生設計を見直すことにより復興過程を開始できる場合には,主観的割引率として家計の主観的時間選好率を用いることが適切であることも導いている¹¹⁾. 死亡事象という非可逆的リスクの場合でも,個人が子供達に資産を残すことに対して純粋な利他的効用を持つ場合には,割引率として主観的時間選好率を用いることが正当化できる. 一般の公共事業の場合と同様に,防災投資がもたらす将来便益を主観的時間選好率を用いて割り引くことが適切だろう. なお,災害により集落が壊滅する危険性があるような非可逆的リスクに対しては災害の生起確率を含めた割引率を用いることが正当化できる場合もあろう. この場合,防災投資便益は災害の生起確率の減少(割引率の減少)効果を通じて評価できる.

(4) 効率性と衡平性

費用便益分析の課題は個人間リスク配分における衡平 性の問題である. 筆者らは、カタストロフ・リスクを対象 とする災害保険市場均衡解は効率的なリスク配分を達成 するが, 富の期待限界効用の小さいタイプの家計(富の 大きい家計)に、より大きな重みが割り当てられたよう な逆進的なリスク配分をもたらすことを示した¹⁰⁾. 言い 換えれば,災害保険の購入層は裕福な家計に限られ,貧 しい家計は災害保険を購入する誘因を持たない. 貧困者 層は常に災害リスクに晒されることになる. 家計が災害 保険によりリスクヘッジできない場合, 一度災害が生じ れば多大な心理的被害が生じる可能性がある.特に,人 命の損失の危険性がある場合, 防災投資に対する支払い 意思額は極めて大きな値をとるだろう. 災害保険でリス クをヘッジできない家計に関しては、被災後に生じる人 生設計の変更という具体的な情報に基づいて被害状態を きめ細かに検討することが必要である. このような人生 設計の変更がもたらす心理的被害額は,物的資産の損害に よる金銭的被害額よりもかなり大きな値になるだろう.

4. 災害保険と防災投資便益の市場評価

(1) ファイナンス技術と災害保険

1990年代に入り災害保険に対する国際再保険市場における再保険料が増加した。その主たる原因は、図-4に示すように、自然災害による被害額が1990年代に急増したことによる。近年の被害額の増加には種々の要因が関係している。まず、ハリケーン・アンドリュー、ノースリッジ地震等に代表されるように数兆円規模の保険金支払いを必要とする災害が生じたことがあげられる。カルフォルニア州、フロリダ州に高額所得者が集中したことにより、保険金支払いのリスクが増加した結果である⁹⁾。また、地球温暖化の影響を指摘する研究もある。これに対して、国際的な損害保険市場(再保険市場を含める)だけでは市場

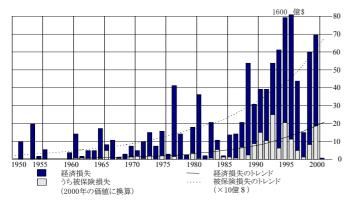


図-4 災害被害額の変遷

Source: MunichRE

規模が小さすぎ、災害リスクを十分に吸収できないという問題が顕在化してきた。このような状況を背景として、損害保険市場よりはるかに規模の大きい国際資本市場において、災害証券(CAT Bond)の売買を通じて保険金支払いの原資を調達する手法が実用化された。災害リスクは経済リスクと無相関であり、投機家はCAT Bondの購入により投機リスクを分散できる。この手法は、「2段階のくじ」として表されるカタストロフ・リスクの第1段階の集合リスクをCAT Bondの販売を通じて分散するとともに、被災者に対する保険金支払いの原資を調達しようとするものである。

筆者らはパレート最適なリスク配分が可能となる理想 的なCAT Bondの設計とそれを原資とする災害保険を提 案し、このような災害保険が完備した状況における防災 投資の経済便益を計測する方法を提案した¹⁰⁾. 2段階リ スクの集合リスクを Arrow 証券 (ある特定の状況が生起 した時のみ支払いが行われる証券) でヘッジし、それを 原資として保険加入者の間で被災後の所得移転を行うよ うな相互保険を組み合わせた Malinvaud=Arrow 型災害 保険 $^{(14),(15)}$ を提案した.このような災害保険により、社会 的最適な災害リスクの分散が可能であることを示してい る. さらに、最適なリスク分散方法が整備された場合で も、災害保険のリスク・プレミアムは1以上の値を持つこ とを示した. 現実には、災害リスクの内容に正確に対応し たようなCAT Bondを設計することは不可能である. 現 実の災害保険は個人リスク,集合リスクの組み合わせによ り定義される状態と1対1には対応しない不完全な保険 とならざるを得ない. したがって, 保険会社も保険金支 払いのリスクを負担することになり、災害保険のリスク・ プレミアムは無視できない値をとることが予想される. 災 害リスクの特性を可能な限り反映しうる CAT Bond の設 計と、災害保険のリスク・プレミアムの設定方法に関する 研究が今後に残された大きな課題である.

(2) 災害保険と政府の役割

災害保険の課題は、甚大な被害をもたらす大規模カタ ストロフ・リスクに対する再保険制度が完備できていない

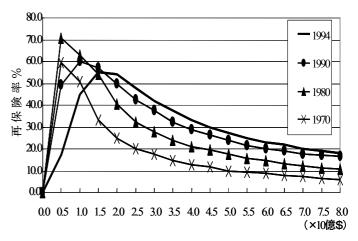


図-5 保険金支払いのLayerと再保険率9)

点にある. CAT Bond は災害リスクをヘッジする有効な 手段であるが, 例えば首都圏で想定されるような大規模 なカタストロフ・リスクを資本市場で分散することは不 可能であると言わざるを得ない. 図-5は、災害リスク を保険金支払いの額に応じていくつかの Layer に分類し, 保険会社がどの程度再保険に加入しているかを示してい る. 同図において縦軸は再保険率を, 横軸は保険支払額 で表した災害リスクの規模を表している. 大規模リスク を再保険市場でヘッジするためには、多額のリスクプレ ミアムを支払う必要が生じる. あるいは, 市場が成立し ない可能性すらある. 現行の保険制度の下では、図に示 すように規模の小さい災害リスクに対しては, 再保険率 は高くなっている. しかし、大規模リスクに対しては再 保険率が低く, 大規模リスクに対する対応が不十分であ ると言わざるを得ない. 大規模なカタストロフリスクを, ある時点における再保険市場,資本市場で分散すること には限界がある. このような大規模リスクに関しては時 間軸を通じて分散していかざるを得ない. 災害基金のよ うに, 政府が異時点間リスク配分を実施できるような制 度設計が必要である.

(3) 災害保険と自己責任原理

災害保険の効用は、1)被災者の復興のための原資を 給付するだけでなく、2)家計に自己責任による防災行動 をとる誘因を与えることにある。例えば、建築物の耐水 化の水準や居住地域により災害保険料率が変化する場合、 家計は災害保険料率を節約できるような防災行動をとる 可能性がある。このように、理論的には災害保険の普及 により、家計の防災意識の向上と自己防災行動の活性化 が期待できる¹⁶⁾。しかし、残念ながら、わが国において 災害保険の普及率はそれほど大きくないのが実状である。 災害保険の先進国であるアメリカ合衆国においても、家 計の災害リスクの認知水準が不十分であることが報告さ れている⁹⁾。災害保険の普及度が十分でない理由は数多く 存在する。まず、災害情報の開示の問題があげられる。現 在、ハザードマップにより災害リスク情報が公開されて いるが、詳細な情報であるとは言い難く認知度も十分で はない. また、家計が行政による被災時の救済処置を期 待すれば災害保険を購入する誘因を持たないだろう. こ のように家計のリスクの不完全認知17)や道徳的危険、保 険市場における取引費用¹⁸⁾が存在する場合,災害保険市 場は失敗する可能性がある.一方,災害保険を強制保険 として制度化するという考え方もあるが,被害者保護が 目的の自賠責保険と異なり、自己の財産の回復が目的で ある災害保険の強制化は法的に無理があるという意見も ある. 地方自治体が住民から税という形で保険料を徴収 し、その資金を原資として災害保険を運用するという方 法も考えられる19). あるいは、政府による強制保険と市 場を通じた災害保険の取引という混合保険システム²⁰⁾が 有用な場合もあろう. 家計の災害リスク認知の不完全性, 家計のモラルハザードを克服しうる望ましい災害保険制 度に関する研究を多方面から蓄積していく必要があろう. この問題に関しては5.(3)で再びとりあげる.

(4) リスク・コミュニケーション

防災安全度が向上すればするほど、住民は災害の危険 性を無視するようになる. 防災安全性は無料で確保できる ものではない. 家計は災害保険への加入という具体的な問 題に直面することにより,災害保険の料率を通じて自分が 直面している災害リスクを真剣に認知することになろう. 災害保険の強制化に関しては種々問題があり,必ずしも望 ましいリスク・ファイナンス手法であるとは思えない. し かし, 家計が防災意識を高めたり, 災害リスクを的確に 認知するためにも、積極的なPR活動を通じて災害保険 の普及を図る努力を行うべきだろう. 防災投資の効果は, 災害保険の料率の減少効果として、市場評価されること になる. 家計は災害保険の料率という価格情報を通じて, 自らが直面する災害リスクを知ることが可能となる. 災 害保険の普及は行政と地域住民が、市場メカニズムを通 じてリスク・コミュニケーションを図るための1つの重要 な手段である. このようなリスク・コミュニケーションを 確立するためには、災害リスク情報の開示を含め、各種の 制度的な条件を整備する必要があろう. 災害リスクの市場 評価を行うためには、個々の画地における災害リスクを評 価(格付け)する必要がある.格付けを行うプロフェッショ ナルの養成やその国際的な資格認定の制度が必要となる. 近い将来,保険市場のビッグバンが予定されており,この 種の制度整備は焦眉の急となっている. 現時点において実 現可能な方法は、不動産売買あるいは新築・立て替えの時 期に,災害リスクの判定結果の届け出を義務づけること であろう. 災害保険の購入の有無は最終的に本人の自由 意思に委ねるとしても, その意思を確認するという手続 きを義務づけることも検討に値しよう.

(5) 災害会計の整備

1993年に5つの関係国際機関(EC, IMF, OECD, UN

及び世銀)の共同編集による1993年度版SNA(Systems of National Accounts)²¹⁾が刊行された. 93SNA の採択を受 けて、OECD、EU加盟主要国は1999年までに93SNAの 導入を完了した²²⁾. 日本では2000年10月に移行作業の 主要部分を終え、93SNA体系に基づく平成13年度版国民 経済計算が刊行されている. 93SNAでは、自然災害等に よる経済活動以外の原因による資産変動が重要視され, そ の記録方法に関して新しい会計手法が導入された. 自然災 害に起因する資産、負債、正味資産の変動を、単に蓄積活 動の記録を補完するものとしてでなく、広義の(負の) 蓄 積活動の一部としてとらえ, 蓄積勘定の内部に記録する 方式が採用されている²³⁾. 従来より, 自然災害が発生す るたびに, 災害がもたらした被害を克明に記録する努力 が重ねられてきた. しかし, 災害による被害を蓄積勘定 として体系的に記述する方法論が整備されていないため, ともすれば個々の災害被害の個別的な記述にとどまって きたのが実状である. 異なる自然災害がもたらした被害 を統一的な視点から相互に比較できる状況にはない. 今 後、93SNAにおける蓄積勘定と整合がとれるような災害 会計原則を確立する必要がある. 災害会計の整備により, 災害基金や保険料の積み立て等による災害復旧費の準備 状況を国民に公開するとともに, 自然災害による被害を 国民のストック量の増減として国民貸借対照表の中に明 確に位置づけることが可能となる.

5. 地域間災害リスクマネジメント

(1) 災害リスクの地域間分担

自然災害が同時に複数の地域において発生することも あるが、基本的には災害リスクは局地的な現象である. 防 災投資は局地的な災害リスクに対応するものであり, その 直接的な効果も空間的に限定されている. また, 防災施設 や災害リスクは空間的に固定されており、リスク・コント ロール技術は局地的な災害リスクに対応する技術と考え ることができる.一方,災害保険やリスク・ファイナンス を行うための金銭や資本は国際的な資本, 再保険市場で調 達され、空間に拘束されない、国土・都市システムは災害 リスクの程度が異なる多くの地域により構成されている. 個人や企業が災害保険を購入することにより, 本来局所的 な現象であった災害リスクは広域的な地域や、国際的な規 模で分散されることになる。また、人々は地域間を自由に 移動することができる. さらに、各地域における防災投資 の水準は,長期的には人口や産業の立地行動に影響を及ぼ すだろう. この時, ある地域における防災投資は, 国土・ 都市システム全体に影響を及ぼすことになる.

一般に、家計が地域間を移動する場合、自己の選択行動が移動前後に居住する地域における災害リスクの大きさや地域所得に及ぼす影響を考慮しない. 家計の地域間移動に伴う外部(不)経済性が存在するため、災害保険市場や分権的な防災投資により災害リスクのパレート最適

な地域間配分が達成される保証はない.よって、中央政府が地域間の所得移転を行うことにより、 社会的に最適な災害リスク配分を達成することが必要となる.資本や人口が空間的に自由に移動が可能な場合、リスク・コントロール、リスク・ファイナンス技術は社会システムに複雑な影響を及ぼす.その政策効果を分析するためには、多地域を考慮した一般均衡モデルの開発が必要となる.

(2) 災害リスクと一般均衡モデル

自然災害等のリスクは地域に固有な現象であり、負の効果を持つ不確実な地方公共財と考えることができる. 地域間で人口移動が存在する場合、地方自治体による分権的な努力だけでは地方公共財の効率的な供給ができない. 家計の人口移動によって生じる財政的外部経済性の内部化をめざした地域間の望ましい所得移転に関しては膨大な研究の蓄積がある. Oatesの財政的連邦主義 24)、Wildasinによる多地域一般均衡モデル 25)を嚆矢として、各種の拡張が試みられている 26) $^{-30}$).

最近、EU諸国やカナダにおける連邦制の是非をめぐる現実的な論議を反映し、個々の地域におけるリスク分担関係や望ましい連邦制の枠組みに関する研究が発展している $^{30)-34$)。これらの研究は、伝統的な財政的連邦主義に関わる議論にリスクの概念を導入し、地域間での望ましいリスク配分を達成するための状況依存的な所得移転方策について議論している。中でも、Persson and Tabellini 32)は地域間におけるリスク分担モデルを提案しており、この分野における代表的研究として評価されている。

自然災害現象は負の被害のみを与える純粋リスクとい う特殊性があるものの、自然災害をリスクのある地方公共 財と位置づければ、最近の地域間リスク配分に関する分析 モデル $^{32)-34}$ と同様のアプローチが可能である.たとえ ば、筆者ら19)はリスク・ファイナンス手法を用いた地域 間災害リスク配分の問題を一般均衡モデルの枠組みで分 析している.一方,多々納等³⁵⁾は地域間の災害リスクの 配分と地域間交易を扱った一般均衡モデルを提案してい るが、そこでは災害保険等によるリスク・ファイナンシン グの問題は考慮されていない. 高木等 36 , 上田 4 は災害を 局地的な現象と捉えて、家計や企業の立地行動を扱った一 般均衡モデルを開発している. 以上の研究を踏まえて, 筆 者ら³⁷⁾はリスク・コントロールとリスク・ファイナンスを 同時に考慮した多地域一般均衡モデルを提案した. 以下, 筆者らの研究成果^{19),37)}に基づいて, 災害保険 (リスク・ ファイナンス),防災投資(リスク・コントロール)によ る災害リスクの地域間分担問題について説明しよう.

(3) 災害保険と地域間リスク分担

自然災害は生起確率は低いが,一度発生すれば大規模な被害が生じる可能性がある. 伝統的な損害保険市場では災害リスクを完全に分散することは不可能である. このような災害リスクの特殊性に対して,筆者らは相互保険と Ar-

row 証券を組み合わせた Malinvaud=Arrow 型災害保険を導入したような一般均衡モデルを提案し、家計の地域間移動が存在しない場合には災害保険の導入により、パレート最適な災害リスクの配分が可能であることを示した¹⁰⁾ (付録 II 参照). しかし、家計のリスク認知が不完全である場合、災害保険市場は失敗する可能性がある. さらに、家計が行政による被災時の救済処置を期待する等、モラルハザードの問題が発生した場合にもパレート最適なリスク配分は達成できない. 災害保険の料率が地域間の人口移動に影響を及ぼす場合、災害保険によりパレート最適な災害リスク配分を達成できる保証はない.

筆者ら19)は、Malinvaud=Arrow型災害保険市場を導入し、地域間人口移動を考慮したような多地域一般均衡モデルを提案した。その結果、家計の自由な地域間移動が可能な場合、災害保険市場だけでは地域間のパレート効率的な集合リスク配分を達成できないことを示した。すなわち、再保険市場による災害リスク分散だけでは、家計の地域間移動によって生じる外部経済を内部化できず、効率的な災害リスクの配分が妨げられることとなる。したがって、災害リスクの効率的な地域間配分を達成するためには、中央政府による地域間所得移転が不可欠となる。すなわち、災害保険料に対する補助金支払いを通じて、地域間災害リスクの効率的な配分を達成する必要がある。

家計は災害リスクに関して正確な認知をしていない。 そこで、地方自治体が父権的な立場より強制保険を実施することも考えられる。筆者ら¹⁹⁾は、地方自治体が家計から徴収する保険料と中央政府から移転される原資をもとに、自然災害が生じた場合の被害を自治体間の相互補助によってヘッジするような相互保険を運営するような自治体保険を提案している。その結果、このような強制保険制度を導入しても人口移動による財政的外部経済性の問題を解決できない。中央政府が地方政府間における所得移転を実施することが不可欠であることを指摘した。

なお、強制保険に関しては種々の問題が指摘されている. 私的財産を対象とする災害保険の場合、その保護を目的とする保険契約を家計に強制しうるかという法学的問題がある. さらに、家計に災害保険の購入を義務づければ、家計が自己防災行動を怠るというモラルハザードの問題もある. 災害保険の強制のあり方に関しても多様な方法があり、その有効性を議論した研究事例もある³⁸⁾. さらには、強制保険に代わる方法として災害保険を強制保険と個人の自由意思に基づく任意保険という 2 段階方式の保険制度として設計する方法も考えられよう^{39),40)}. このように、自治体保険のあり方に関しては多様なスキームが考えられる. 災害保険に関する研究は緒についたばかりであり、望ましい災害保険のスキームのあり方に関して研究を蓄積していく必要があろう.

(4) 防災投資と地域間リスク分担

災害リスクのコントロールは、それをもっとも効率的

に遂行することができる主体が行うことが望ましい. 地 方政府は多くの社会基盤施設(地方公共財)を供給して いる. それらの社会基盤に対する防災投資は、それを管理 する地方自治体が地方分権的に実施することが望ましい. 一方, リスク・ファイナンスにより, 個々の地域の災害リ スクを他地域に分散することが可能となる. 災害リスク はできるだけ多くの地域や個人・組織の間で分散するこ とが望ましい. ある地域における防災投資の効果はリス ク・ファイナンス技術を通じて他地域にも及ぶことにな る. 個々の地方政府が分権的に防災投資を実施する場合, 以下の問題が生じることになる. すなわち, 1)地方政 府は自地域における防災投資が他の地域に及ぼす影響を 考慮に入れずに防災投資水準を決定する,2)家計は自 己の居住地選択行動が当該の地域の災害リスクに及ぼす 影響を考慮に入れず居住地を選択する. その結果, 地方 政府の分権的な防災投資行動や家計の自由な地域間移動 により、社会的に最適な災害リスクや資源の配分が達成 される保証はない.

自然災害後の円滑な復旧・復興活動を確保するために、被災地域の地方政府に財政的な支援を行う制度の必要性が議論されている。被災地域の地方政府が財政的支援を受けられるような災害基金制度も提案されている。しかし、危険地域の地方政府が常に中央政府による被災時の救済処置を期待することになれば、社会基盤施設に対する事前の防災投資が過小になる危険性も存在する。地方自治体による防災投資(リスク・コントロール)と中央政府(あるいは市場メカニズム)による地域間財政移転(リスク・ファイナンス)は互いに密接に関連している1)。災害リスクに効率的に対処するためには、リスク・コントロールとリスク・ファイナンスを駆使することにより望ましい地域間災害リスク配分を達成することが必要である。

筆者ら37)は、災害リスクが局地的現象であることを指 摘するとともに,災害リスクに直面した地域政府の分権 的な防災投資行動が社会全体にとって効率的なリスク配 分を達成する可能性について分析した. そのため、前述 の一般均衡モデル19)を拡張し、リスク・コントロールと リスク・ファイナンスの機能の双方を同時に考慮したよう な多地域一般均衡モデルを提案している. 家計が居住地 域を選択するとき, 家計は当該地域で得られる期待効用 水準のみを考慮に入れ、自身の当該地域への転入が既に 居住している家計に与える影響を考慮しない. 一方, 地 域政府は防災投資水準を決定する際に, 家計数を与件と した自地域の支払い意思額のみを考慮して, 防災投資行 動が家計の人口移動に及ぼす影響を考慮しない. さらに 災害リスクはカタストロフリスクであり, 災害が生起す ると地域全体の富の総和が大きく減少するため, 地域内 の相互保険のみを用いてはリスクを効率的に分散するこ とができない.

筆者ら³⁷⁾によれば、このような分権的市場において、 地方政府がMalinyaud=Arrow型災害保険を市場で取り 引きすることによって、社会的に最適なリスク・ファイナンスを実現できることを示した.しかし、社会的最適な防災投資を分権的に達成するためには、中央政府は危険地域の政府に対して、ある水準の定率補助金を提供する必要がある.それと同時に危険地域への人口移動を抑制するための地域間財政移転を行う必要がある.それらの複合的な条件を満足する地方財政政策が採用されるとき、分権的に社会的最適な地域間資源・リスク配分を達成できることを示している.

6. 防災経済評価の高度化

(1) 防災経済評価の高度化の必要性

防災安全性が低い段階では災害により生じる物的な期 待損失も大きく, 期待被害額を用いた費用便益分析の意 義は大きい, 防災安全性の向上に伴って, 小規模・多頻度 の災害の生起頻度は減少し, 家計の防災意識は低下して いく. しかし、大規模・稀少頻度の災害というカタストロ フ・リスクが減少したわけではない. 高度化した災害リ スクを軽減するためには, 防災投資によるリスク制御技 術だけでなく、リスク・ファイナンス技術による家計の自 己防災行動等,総合的な災害リスク・マネジメントが必要 とされる. したがって, 防災投資の費用便益分析の内容 も、総合的なマネジメント体系と整合性がとれるように 高度化される必要がある. 行政と地域住民の間に健全な リスク・コミュニケーションを確立するためにも,心理的 被害も考慮したきめ細かな被害予測と、災害リスクに関 する詳細な情報公開が必要である. 防災投資の経済評価 は、地域住民がどのような自己防災行動を採用している かと無関係ではない.

(2) リアルオプションアプローチ

ひとたび防災施設を整備すると多額の費用がサンクする.一方で、防災施設は、その完成時の性能を維持するには一定の費用が必要であるものの、半永久的な耐久性を有する.そのため防災施設整備の計画は、非常に長い時間(場合によっては無限の将来まで)を対象として費用と便益が比較されることになる.この点は掛け捨て型の災害保険等に代表されるリスク・ファイナンスの計画と対照的である.防災投資の費用にはライフサイクルコストという概念が必要となる.一方、防災施設がライフサイクルで発生させる便益を整備時点で正確に予測することは困難である.このような状況において、防災投資の意思決定にリアルオプションアプローチを用いることが有効となる41).

治水事業の例を考えよう.水害リスクに対する治水計画は、対象とする河川の全ての河岸に対して均一に、当該計画において決定された機能(計画規模)をもつ堤防を完備することを目標とする.工事を進める際には、左右岸問題・上下流問題に留意して、左右岸の強度を等しく維持し

ながら下流より上流に向かって計画規模の堤防を延長していくことが原則となる。そして一連の堤防の整備が完了するには、他の公共施設の整備と比較して、非常に長い時間を要する。堤防は長い時間をかけて少しずつ延長されていくことになる。ここで3つの点を指摘しよう。

第1に、堤防の整備が未だ道半ばの状態において、社 会経済の状態が治水計画が決定した時点と大きく異なっ ていることがあり得る. あるいは治水計画の決定時点で 期待した状態と大きく乖離していることがあり得る. 例 えば、流域に計画時点で予想したほど物的資産が蓄積さ れなかった場合には、水害の際に失われる潜在的損失も 予想したほど大きくなかったことになる. 従って計画規 模の堤防を整備しても、堤防整備に要する費用に対して 小さな治水便益しか享受することができないことになる. それに加えて, ひとたび堤防整備を行うと, その整備を 撤回し、投入した費用を完全に回収することはできない. よって, このような状態において堤防を整備することは効 率的ではない. 現時点では計画を進行させることを一時保 留して,将来潜在的被害が大きくなったときに再び整備を 再開することが効率的となる. 第2に, 下流域の堤防整備 が上流域の堤防整備の前提条件になっていることである. 下流域の堤防の経済評価において, 将来上流域の堤防整 備を行う可能性を確保できるという便益を考慮する必要 がある. 第3に、高い機能をもつ堤防を整備して水害リ スクを軽減できれば、背後地域への資本蓄積が促される. 治水投資が,河川流域の高度な土地利用を誘発する. 堤 防整備の価値は,流域利用の高度化のための基盤を整備 するという側面からも把握する必要がある.

以上の例題を通じて, 下流域の堤防整備は期待被害額 の減少という直接的な効果だけでなく、3つのオプション をもたらしていることが理解できる. 1つは経済動向を 勘案しながら堤防の実施時期を最適に決定できるという オプション(最適実施時刻オプション)である.このオプ ションを考慮することにより,新しい情報を利用するため に積極的に投資を留保する価値が評価される. それに対し て,下流域の堤防を整備することにより,いつでも上流域 の堤防を整備できる機会を獲得するというオプション (発 展可能性オプション),また土地利用の高度化の基盤を獲 得するというオプション(成長オプション)が示されてい る. これらのオプションの存在は早期の堤防整備を推進 する要因となる. 伝統的な費用便益分析では、下流域の 堤防の効果のみに着目し、それを現時点で整備するかど うかのみを検討するという非常に限定された意思決定問 題を考えている。今後はリアルオプションアプローチを 導入することによって,直接的便益だけでなく,プロジェ クトがもたらす様々なオプションを考え, その経済価値を 積極的に評価していくことが必要となる.

(3) 総合的リスク・マネジメントと経済評価

災害リスク・マネジメントにおいては、リスク・コント

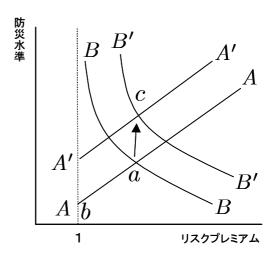


図-6 リスクプレミアムと防災投資水準

ロールとリスク・ファイナンスの適切な組み合わせを見い だす必要がある. これら両手法の望ましい組み合わせは, その時点で利用可能な防災技術と災害保険技術の内容に 規定される. リスク・コントロールとリスク・ファイナ ンスの効果は互いに密接に関連している. 図-6は横軸 に災害保険のリスクプレミアム, 縦軸は社会が備えるべ き最適防災投資水準を表している. 曲線 A - A は災害保 険のリスクプレミアムに対応する最適防災投資水準を表 したものである. 3.(2)で言及したように防災投資便 益は期待被害額に災害保険のリスクプレミアムを乗じた 水準になる. すなわち, 災害保険のリスクプレミアムが 大きくなるほど防災投資便益は増加し、費用便益分析を 用いて決定される社会の防災投資水準は増加する. その 結果, リスクプレミアムと最適防災水準の関係を表す曲 線はA - Aに示すように右上がりとなる. 言い換えれば、 災害保険のリスクプレミアムが増加するほど社会はより 高度な防災投資を必要とする.一方、曲線 B-Bは防災 水準とそれに対して市場均衡で求まる災害保険のリスク プレミアムの関係を示した曲線である. 社会の防災水準 が増加するほど災害ポテンシャルは減少し、その結果災 害保険のリスクプレミアムは減少する. その結果, 防災 投資水準と市場均衡リスクプレミアムの関係は右下がり の曲線B-Bで表現される。社会にとって望ましいリス クプレミアムと防災水準の関係は曲線 A-Aと曲線 B-B の交点aで与えられる.なお、期待被害額に基づいた費用 便益分析を用いた場合,最適防災投資水準は点bで与えら れる. 社会にとって最適な状況 b と比較して, 防災投資水 準は過小水準となる.

社会が高度化し、災害ポテンシャルが増加したとしよう。社会にとって必要な最適防災投資水準が増加するため曲線 A-A は上方へシフトする(曲線 A'-A'で表される)。さらに、災害ポテンシャルが増加するため曲線 B-B は右側にシフトする(曲線 B'-B'で表される)。したがって、新しいリスク・マネジメント戦略は曲線 A'-A'と曲線 B'-B'の交点 cへ移行する。最適防災投資水準は増加する。リスクプレミアムに関しては 2 つの曲線の大小関係

に依存し、増加するか減少するかは一意的に決まらない。現在、リスク・ファイナンス技術が急速に発展し、災害保険の市場均衡プレミアムの値が減少しつつある。その結果、曲線B-Bは左側にシフトしつつある。しかし、3. (2) で議論したように、リスク・ファイナンス手法により集合リスクを完全に分散できるわけではなく、リスクプレミアム値は1より大きい値にとどまる。

以上の議論は、家計が災害リスクを認知でき、自己責任に基づいて災害保険を購入することを前提としたものである。家計が災害リスクの認知に失敗し、自己責任に基づいた自己防災行動をとらない場合、防災投資便益はリスクプレミアムを考慮した経済便益よりもはるかに大きい値をとる。しかし、災害リスクをすべて防災投資により軽減することは効率的な方法ではない。家計も自己責任による防災努力を行うべきである。本節で議論したようなリスクプレミアムとそれに基づく最適防災投資水準(点a)は、家計が防災努力を行うことによって達成可能な1つの努力目標として位置づけることができる。

7. おわりに

伝統的な費用便益分析では、防災投資の経済便益を期 待被害額で評価する方法が採用されてきた. 大規模な災 害が生じれば,多くの家計や企業が同時に被災し,巨大 な被害が生じる危険性がある. 期待被害額に基づく方法 は、災害リスクが有する同時性・巨大性というカタストロ フリスクの特性を十分に評価できないという限界がある. 本研究では、災害リスクを軽減する方法として防災投資 に代表されるリスク・コントロール手法と災害保険とい うリスク・ファイナンス手法の双方があることを指摘し た. 高度化した災害リスクに対処するためには、リスク・ コントロール手法とリスク・ファイナンス手法を組み合わ せた効果的なリスク管理体系を構築していく必要がある. それと併せて,費用便益分析の枠組みの高度化を図る必 要がある. 本稿では災害リスクのカタストロフ性を考慮 した費用便益分析の基本的な考え方について議論したも のであるが、それを通じて今後に残された研究課題のい くつかを示しえたと考える.

付録 I 個人リスクと集合リスク

災害リスクを、各家計が被災するリスクを表す個人リスクと社会全体の被害を表す集合リスクの複合リスクとしてモデル化しよう。タイプh $(h=1,\cdots,H)$ の家計数を N_h と表す。地域全体では $N=\sum_h N_h$ の家計が存在する。個人リスクは災害が生起した場合に各家計が被る被害の状態により定義される。個人リスクの事象として、1)平常の場合 (s=0)、2)ランク s $(s=1,\cdots,S)$ の被害を受けた場合を考える。 L_s (>0) を家計が被るランク s の被害額とする。次に集合リスクをモデル化する。いま、ある災害が発生した時のタイプ h の家計の集計的な被

害状況を被害者数ベクトル $q_h=(q_h^0,\cdots,q_h^S)$ で表す.ここに, q_h^s はランクsの被害を受けたタイプhの家計数であり, $\sum_{s=0}^S q_h^s=N_h$ が成立する.この時,集合リスクの各事象を被災した家計数ベクトル $q_t=(q_1,\cdots,q_H)$ で表せる.ここに,t ($t=0,\cdots,T$) は集合リスク事象を表す添字である.集合リスク事象t が生起する確率を $\pi(t)$ と表す.ただし $\sum_{t=0}^T \pi(t)=1$ である. $\pi(t)$ は第 1 段階目の「くじ」の確率に相当する.そして,集合リスク事象t が生じた時にタイプhの家計がランクs ($s=1\cdots,S$) の被害を被る確率を $\pi_h(s|t)$ で表す.ただし $\sum_{s=0}^S \pi_h(s|t)=1$ である.また $q_h^s=\pi_h(s|t)N_h$ が成立する. $\pi_h(s|t)$ は,第 2 段階目の「くじ」において各家計に個人リスクが配分される確率を表している.

付録II 災害リスクと一般均衡モデル

状態 (s,t) が生じた時のタイプ h の家計の(所得移転が行われる前の)富を $e_h(s)=W_h-\xi_h(s)$ と表そう.ただし, W_h はタイプ h の家計の平常時の富, $\xi_h(s)$ は個人リスク s が生じた場合の被害額である.災害が生じた場合,家計間で所得移転が行われる.災害リスク事象 (s,t) の生起確率を $\pi_h(s,t)=\pi_h(s|t)\pi(t)$ と表す.また,その時の当該家計の所得移転後の富を $x_h(s,t)$ で表そう.家計の期待効用関数 $u_h:x_h\to R$ を次式で表す.

$$u_h(\boldsymbol{x}_h) = \sum_{s,t} \pi_h(s,t) v_h(x_h(s,t))$$

ただし、 $\boldsymbol{x_h} = \{x_h(0,0),\cdots,x_h(s,t),\cdots,x_h(S,T)\}$ は 所得移転後の状況依存的な富ベクトルである. また, 間 接効用関数 v_h : $R \rightarrow R$ は2階連続微分可能な基 数的効用関数であり、性質 $dv_h(x_h(s,t))/dx_h(s,t)>0$ 、 $d^2v_h(x_h(s,t))/dx_h(s,t)^2 \le 0$ を満足する. タイプ h に属す る家計はすべて対称的であると仮定する. 家計が同じタイ プの家計と互いに個人リスクに対して相互保険契約を結 ぶ場合を考えよう. 相互保険契約は状況依存的な保険契約 の東として定義できる. タイプhの相互保険 Ω_h を, 災害リ スク事象(s,t)に対する保険金 $m_h(s,t)$ と保険料 $\mu_h(t)$ の 組み合わせ $\Omega_h = (m_h, \mu_h)$ として定義する. ただし, $\mathbf{m}_{h} = \{m_{h}(0,0), \cdots, m_{h}(s,t), \cdots, m_{h}(S,T)\}, \boldsymbol{\mu}_{h}$ = $\{\mu_h(0), \dots, \mu_h(t), \dots, \mu_h(T)\}$ である. 家計は集 合リスク事象tが生起した場合に $\mu_h(t)$ を拠金し、ランク $s(s=1,\dots,S)$ の被害を被った家計に保険金 $m_h(s,t)$ が 支払われる. 被災しなかった家計には保険金は支払われ ず、 $m_h(0,t)=0$ である. 相互保険契約を締結した場合、 事象(s,t)が生起した時のタイプhの家計の富は

$$\hat{e}_h(s,t) = e_h(s) + m_h(s,t) - \mu_h(t)$$

となる. 集合リスク事象tが生起した時,支払われる保険金の総額は $\sum_h\sum_s\pi_h(s|t)N_hm_h(s,t)$ となり,保険収入は $\sum_hN_h\mu_h(t)$ となる. 保険会社の状況依存的利潤は

$$\Pi(t) = \sum_{h=1}^{H} \sum_{s=0}^{S} N_h \{ \pi_h(s|t) m_h(s,t) - \mu_h(t) \}$$

と表される. 完全競争的に集合リスク事象 t の生起に応じ

て収支がとれていることより,次式が成立する.

$$\mu_h(t) = \sum_{s=0}^{S} \pi_h(s|t) m_h(s,t)$$

るが、集合リスクを異なるタイプの家計間で分散するもの ではない. 集合リスクをヘッジするために、状況依存的な 証券を導入しよう. 保険会社が相互保険と同時に集合リス クの状態の数と同数の種類を持つ Arrow 証券¹⁴⁾を販売す る. Arrow 証券1単位当たりの事前の市場価格をp(t)とし よう. タイプhの家計のArrow 証券保有ベクトルを $a_h =$ $\{a_h(0), \dots, a_h(T)\}$ と表そう. Arrow 証券の東 a_h の価格は 次式で表される.

$$y_h = \sum_{t=0}^{T} p(t) a_h(t)$$

 $y_h = \sum_{t=0} p(t) a_h(t)$ 家計hが相互保険契約に加えて、 Arrow 証券 a_h を保有 している場合, 災害リスク事象 (s,t) が生起した時の富 x(s,t) は次式で定義される.

$$x_h(s,t) = e_h(s) + m_h(s,t) - \sum_{s'=0}^{S} \pi_h(s'|t) m_h(s',t) + a_h(t) - y_h \text{ for all } s, t$$

右辺の第1項は災害後・所得移転前の富, 第2項は(s,t) に依存した保険金, 第3項はtのみに依存した保険料, 第 4項と第5項の $a_h(t) - y_h$ はtが生起した際のArrow証券 保有のキャピタルゲイン(正の値のとき)あるいはロス (負の値のとき)を表す. つぎに、集合リスク事象tが生 起した状態の下での、個人リスク事象sに関する富の条件 付き期待値を考えよう. 集合リスク事象tのそれぞれに対

$$\sum_{s=0}^{S} \pi_h(s|t) x_h(s,t) = \sum_{s=0}^{S} \pi_h(s|t) e_h(s) + a_h(t) - y_h \text{ for all } s, t$$
 (1)

状況依存的富の8に関する期待値は, 所得移転前の富 $e_h(s)$ の期待値と Arrow 証券のキャピタルゲイン (ロス) の和として表される. 集合リスクtに対するArrow 証券の

$$a_h(t) = \sum_{s=0}^{S} \pi_h(s|t) \{x_h(s,t) - e_h(s)\} + y_h$$

待効用最大化問題は以下のようになる.

$$\max_{\substack{m_h, a_h, x_h, y_h \\ \text{subject to}}} \left\{ \sum_{s=0}^{S} \sum_{t=0}^{T} \pi_h(s, t) v(x_h(s, t)) \right\}$$
subject to
$$\sum_{t=0}^{T} p(t) a_h(t) = y_h$$

$$x_h(s, t) = e_h(s) + m_h(s, t) - \sum_{s'=0}^{S} \pi_h(s'|t) m_h(s', t)$$

 $+a_h(t)-y_h$ for all s,t $x_h(s,t) \ge 0, a_h(t) \ge 0, m_h(s,t) \ge 0, y_h \ge 0$

この時, 最適な相互保険金の水準は

$$m_h(s,t) = e_h(0) - e_h(s) = L(s)$$

となり、個人リスクは相互保険により完全にカバーされ

る. Arrow 証券の市場裁定価格 p(t) は, 互いに排反であ る集合リスク事象 t ごとに証券市場が清算される水準に 決定される. 集合リスク事象tに対して、保険会社による Arrow 証券の支払い総額は $\sum_h N_h a_h(t)$, 家計による Ar- row 証券の購入総額は $\sum_h \sum_t N_h p(t) a_h(t)$ となる. したが って、証券市場における裁定条件は

大夫せる.
$$\sum_{h=1}^{H} N_h a_h(t) = \sum_{h=1}^{H} \sum_{t'=0}^{T} N_h p(t') a_h(t') \quad \text{for all } t$$

参考文献

- 1) 小林潔司, 横松宗太: 治水経済評価のフロンティア: 期待 被害額パラダイムを越えて、河川技術に関する論文集、第 6巻, pp.237-242, 2000.
- 2) 植草益編:現代日本の損害保険産業,NTT出版,1999.
- 3) Johansson, P.-O.: Cost-Benefit Analysis of Environmental Change, Cambridge University Press, 1993.
- 4) 上田孝行: 防災投資の便益評価-不確実性と不均衡の概念を 念頭において, 土木計画学研究・論文集, No. 14, pp.17-34, 1997.
- 5) 多々納裕一: 不確実性下のプロジェクト評価:課題と展望, 土木計画学研究・論文集, No. 15, pp. 19-30, 1988.
- 6) Starrett, D. A.: On the social risk premium, in: Heller, W. P., Starr, R. M., and Starrett, D.A. (eds.) Social Choice and Public Decision Making: Essays in Honor of Kenneth J. Arrow, 1, pp.159-176, Cambridge University
- 7) Johansson P.-O. and Löfgren, K.-G.: Wealth from optimal health, Journal of Health Economics, 14, pp.65-79, 1995.
- 8) 山口光恒: 現代のリスクと保険, 岩波書店, 1998.
- Froot, K. A. (ed.): The Financing of Catastrophe Risk, The University of Chicago Press, 1999.
- 小林潔司, 横松宗太:カタストロフ・リスクと防災投資の 経済評価, 土木学会論文集, 639/IV-46, pp. 39-52, 2000.
- 横松宗太, 小林潔司: 防災投資による物的被害リスクの軽 減便益, 土木学会論文集, 660/IV-49, pp. 111-123, 2000.
- 12) Stiglitz, J. E.: Economics of the Public Sector, W. W. Norton, 1986.
- 横松宗太, 小林潔司: 防災投資による非可逆リスクの軽減 効果に関する経済便益評価,土木計画学研究・論文集, No. 16, pp.393-402, 1999.
- 14) Arrow, K. J.: The role of securities in the optimal allocation of risk-bearing, Review of Economic Studies, Vol. 31, pp.91-96, 1964.
- 15) Malinvaud, E.: The allocation of individual risks in large markets, Journal of Economic Theory, Vol. 4, pp. 312-328, 1972.
- 16) Froot, K. A.: Introduction, in: Froot, K. A. (ed.): The Financing of the Catastrophe Risk, The University of Chicago Press, 1999
- 17) Kunreuther, H. et al.: Disaster Insurance Protection: Public Policy Lessons, John Wiley, 1978.
- 18) 酒井泰弘:不確実性の経済学,有斐閣,1982
- 19) 横松宗太, 小林潔司: 自治体保険による地域間最適災害リ スク配分, 土木計画学研究・論文集, No. 16, pp. 369-380,
- 20) Blomqvist, Å. and Johansson, P.-O.: Economic efficiency and mixed public/private insurance, Journal of Public Economics, 66, pp. 505-516, 1997.
- 21) Comission of the European Communities, International Monetary Fund, Organisation for Economic Cooperation and Development, United Nations and World Bank: System of National Accounts 1993, 1993.
- 22) 経済企画庁経済研究所: 我が国の93SNAへの移行について

- (暫定版),2000.
- 23) 武野秀樹:国民経済計算入門,有斐閣,2001.
- Oates, W.: Fiscal Federalism, Harcourt Brace Jovanovich, 1972.
- Wildasin, D.: Urban Public Finance, Harwood, Academic Publishing, 1986.
- 26) Myers, G.: Optimality, free mobility, and the regional authority in a federation, *Journal of Public Economics*, Vol. 43, pp. 107-121, 1990.
- 27) Hercowitz, Z. and Pines, D.: Migration with fiscal externalities, *Journal of Public Economics*, Vol. 46, pp. 163-180, 1991.
- 28) Mansoorian, A. and Myers, G.: Attachment to home and efficient purchases of population in a fiscal externality economy, *Journal of Public Economics*, Vol. 52, pp. 117-132, 1993.
- 29) Flatters, F., Henderson, J.V., and Mieszkowski, P.: Public goods, efficiency and regional fiscal equalization, *Journal of Public Economics*, Vol. 3, pp. 99-112, 1994.
- 30) Wellisch, D.: Theory of Public Finance in a Federal State, Cambridge University Press, pp. 191-199, 2000.
- 31) Asdrubali, P., Sorensen, B., and Yosha, O.: Channels of interstate risksharing: US 1963-1990, *Quarterley Journal of Economics*, III, pp. 1081-1110, 1996.
- 32) Persson, T. and Tabellini, G.: Federal fiscal constitutions: Risk sharing and redistribution, *Journal of Political Economy*, Vol. 43, pp. 979-1009, 1996.
- 33) Wildasin, D.: Factor mobility, risk and redistribution in the welfare state, *Scandinavian Journal of Economics*, Vol. 97, pp. 527-546, 1997.

- Bucovetsky, S.: Federalism, equalization and risk aversion, Journal of Public Economics, Vol. 67, pp. 301-328, 1998
- 35) 庄司靖章, 多々納裕一, 岡田憲夫: 災害による資本の損傷 を考慮した2地域一般均衡モデル, 土木計画学研究・講演 集, No.23/2, pp.149-152, 2000.
- 36) 高木朗義,上田孝行,森杉壽芳,西川幸雄,佐藤尚:立地 均衡モデルを用いた治水投資の便益評価手法に関する研究, 土木計画学研究・論文集,No. 13, pp. 339-348, 1996.
- 37) 横松宗太, 小林潔司, 田中一央: 分権的防災投資と地域間災害リスク配分, 土木計画学研究・論文集, No. 18(2), pp. 275-286, 2001.
- 38) Lewis, C. M. and Murdock, K. C.: Alternative Means of Redistributing Catastrophic Risk in a National Risk-Management System, in: Froot, K. A. (ed.): *The Financing of Carastrophe Risk*, The University of Chicago Press, 1999.
- 39) Blomqvist, Å. and Johansson, P.-O.: Economic efficiency and mixed public/private insurance, *Journal of Public Economics*, Vol. 66, pp. 505-516, 1997.
- 40) Selden, T. M.: Should the government provide catastrophe insurance?, *Journal of Public Economics*, Vol. 51, pp. 241-547, 1993.
- 41) 小林潔司, 横松宗太, 織田澤利守: サンクコストと治水経済評価: リアルオプションアプローチ, 河川技術に関する論文集, 第7巻, pp. 417-422, 2001.

災害リスクマネジメントと経済評価

小林潔司・横松宗太

大規模な災害が生じれば、多くの家計や企業が同時に被災し、巨大な被害が生じる危険性がある。期待被害額に基づく費用便益分析は、災害リスクが有する同時性・巨大性というカタストロフリスクの特性を十分に評価できないという限界がある。本研究では、災害リスクを軽減する方法として防災投資に代表されるリスク・コントロール手法と災害保険というリスク・ファイナンス手法の双方があることを指摘した。高度化した災害リスクに対処するためには、リスク・コントロール手法とリスク・ファイナンス手法を組み合わせた効果的なリスク管理体系を構築していく必要がある。それと併せて、費用便益分析の枠組みの高度化を図る必要がある。本研究では災害リスクのカタストロフ性を考慮した費用便益分析の基本的な考え方について議論するとともに、今後に残された研究課題を示した。

DISASTER RISK MANAGEMENT AND ECONOMIC EVALUATION

Kiyoshi KOBAYASHI and Muneta YOKOMATSU

Once large scaled disaster hits a society, a large number of households and firms are simultaneously damaged. The traditional cost benefit analysis of disaster mitigation mainly focuses upon expected loss reduction, neglecting the catastrophe aspects of disaster risks. In this paper, it is claimed that the disaster risk management methods can be classified into risk control and financing methods. In order to cope with the catastrophic disaster risks, it is requested to build the integrated disaster management systems and extend the theoretical framework of cost-benefit analysis. In this paper, the authors present cost-benefit analysis methods of catastrophe risk mitigation and summarize research issues to be solved in future.