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1.1.1.1. IntroductionIntroductionIntroductionIntroduction 

 The forest fires in Kalimantan and Sumatra, Indonesia has caused large effects to 

ASEAN nations in dry season when the southwest monsoon blows harder. That 

monsoon including some pollutants is called Haze1), and ASEAN nations receive 

some damages from Haze in each year such as the close of the airports, respiratory 

diseases and so on. Haze disaster especially in 1997 is one of the most terrible 

disasters, and the total loss by Haze amounted to 9million USD in all damaged 

nations2). 

 Malaysia near Sumatra Island is one of the most suffering nations from Haze. 

Western area in Malaysia, which has some metropolis and some active Industries, is 

particularly easy to be affected. On Haze disaster in 2005, schools, Industries, and 

offices temporally had to close3). To prevent from that disaster, government in 

Malaysia has made efforts to build a system which can give us the alarm by 

estimating the density of air pollution in real time. Now private company, Alam 

Sekitar Malaysia (ASMA)4) has managed the monitoring network (Continuous Air 

quality monitoring, called CA station), set at 50 places in Malaysia, which can 

continuously measure the air pollutant such as CO, CO2, NOx, SOx. Based on 

ASMA’s data, Malaysian government in department of environment established API 

(Air Pollution Index)5) standard and judge whether air pollutants exceed API 

standard or not. But now they don’t have a system which enables them to forecast 

air pollution density. To provide alarm information, they need to estimate future 

data on Haze, and statistic models are effective to forecast. 

On this motivation, Kobayashi has already built a statistic model which can 

forecast the air pollutant density, and analyzed correlation between space and time 

on Haze. His research shows the characteristics of Haze, long memory, seasonality, 

and space-time correlation. Furthermore he developed his model by adopting 

regime switching in addition to long memory. Regime switching makes us possible 

to forecast more accuracy so that we can adjust the sharp change of the density of 

Haze and to overcome the occurrence of error when Haze depends on past data in 

long term. Kobayashi shows the behavior of Haze by setting regimes in each station 



in Malaysia. However, regime switching in his model required us to forecast the 

number of hotspots in Sumatra Island, because time series data as to hotspots in 

Sumatra Island decided the regime of Haze. In Kobayashi’s research he considered 

the number of hotspots as given values and inserted them exogenously into the 

model, but exogenous values bring some error to each regime and bring a limitation 

to forecasting. So we can’t set up the accurate regime on Haze, unless we can predict 

the number of hotspots.  

The purpose of this paper is to forecast the number of hotspots statistically, and we 

try to compensate the lack of Kobayashi’s previous theory. As a concrete explanation, 

we build a statistical duration model to enable us to estimate the number of 

hotspots in Sumatra Island by using the duration model based on hazard function 

on space-time data given by satellite. Finally we apply this duration model to the 

observed data in Sumatra Island, and then we reveal the effectiveness of the model. 

Outline of this paper is as follows. In Chapter 2, we explain the fundamentals of 

this research. Chapter 3 shows the duration model. Chapter 4 is result of applying 

this duration model to observed data of hotspots. 

 

2.2.2.2. FundamentalsFundamentalsFundamentalsFundamentals    

Some researcher has proposed CA model (Cellular Automata model) is effective to 

forecast the process of landscapes on forest fire. CA model is a statistical simulation 

model which can take correlation of space-time into consideration. CA model can 

describe the landscape as a grid in which the dimension of each cell is 50m (2500m2), 

and we can consider several processes which affect the landscape of fire spreading, 

including diffusive spread from cell to cell. With the use of CA model we can find the 

change of landscapes during time series, besides can see when forest fire happens 

and disappears. However, CA model demands us much information about 

landscapes. It is certain that the more the number of explanatory variables are, the 

more accurate we can forecast. But the objective of this paper is to cover the 

theoretical problem in Kobayashi’s paper. He used only the number of hotspots in 

Sumatra Island as a explanatory variable. Besides we want to build a model as 

simple as possible because of computational problems. 

As an approach to forecast easily, we try to adjust the duration model. The 

duration model can show a spell of landscapes, and specify the turning points in the 

course of spreading of forest fire. Furthermore duration model makes computational 

tasks more fewer than CA model, and lead us to express more flexibly.  

In this research, we regard a spell in forest fire as a random variable, and then we 



build a statistical duration model which can update the spread of fire with use of 

the number of past hotspots data.  

3.3.3.3. Duration modelDuration modelDuration modelDuration model    

3.13.13.13.1 Geo additive Geo additive Geo additive Geo additive hazard functionhazard functionhazard functionhazard function    

 Geo additive hazard function is a kind of duration model which can express the 

correlation of space-time. First we define a hazard function before setting up a geo 

additive function. 

Let t, a non-negative random variable, be a spell length for forest fire in the 

absence of censoring, and let T be the censoring time measured from time origin for 

the spell. Then the distribution function and the density function following t are 

given as follows. F��t� � f�t� 
Moreover, we suppose a probability distribution S(t) that means forest fire has not 

yet occurred during T 
 t � T. In that sense, probability distribution S(t), called 

survivor function, is the probability that the random variable T will equal or exceed 

the value t. A particular useful function for duration analysis is the hazard function 

h(t), and survivor function S(t) is related so closely to hazard function h(t) giving the 

rate at which spell will be complicated at duration t, given that they last until t. 

Then we can define hazard function and see the relation below 

h�t� � lim���
Pr�t � T � � 
 ��h  

� � dlnS�t�dt                
                                                  � f�t�S�t�                                                                    �1� 

To express the characteristics of each spot, we will adopt the proportional hazard 

function to h(t). h �t� � h��t�exp �η �                                                            � exp�logh��t� 
 η �                               �2� 
Where index i means the number in each spot and h0(t) is a baseline hazard 

independent to the factor of spots. In formula (1), we can estimate the log-likelihood 

function as follows, 

                                             L � )�δ logh �t� � + h �u�du-
�

 �                        �3� 
Where δ  is a dummy variable, when right censoring in i-th hotspot occurs, δ  will 



get 1, otherwise δ  will be 0. 

 Kneib and Fahrmeir proposed a Geo additive function, which can adjust to the 

relationships hold everywhere within spots. The characteristic of Geo additive 

function is 1) to express the correlation in spatial dimensions, 2) to adjust to 

time-varying effects, 3) to estimate baseline function simultaneously with covariate 

effects.  

       h �t� � exp /g��t� 
 ) γ1u 1 
 ) g2�t�u 2 
 ) f3�u 3� 
 f �s�321 5          �4� 
Here, g0(t)=logh0(t) means a baseline hazard function with liner, and uij, uik, uil are 

fixed covariates on i-th spot whose effect are represented by time-independent 

parameter γ1 and time-dependent parameter gk(t). Where fl(uil), which is normally 

applied to three dimensional splines function, is a non-liner effect of covariate uil, 

and fi(s) shows the spatial effect in i-th spot. 

 Furthermore Kneib and Fahrmeir suggest the new way of parameter estimating to 

add penalized differences between parameters adjacent basis function. For the 

spatially correlated and structured effect, we choose Markov random field common 

in spatial statistics of the form 

                                  f �s� � 1N ) β9
9:;< 
 u9            u9~N >0, δ9AN B                          �5� 

Where N  is the number of adjacent area s with spatial effect and s : D  denotes 
that area s is a neighbor of area D . Therefore fi(s) is an average of evaluations of 

spatial effect for neighboring areas. us is a random variable and δ9A is a variance of u9. The N×S design matrix LLLLiiii giving us the    adjacent relation between every spot and 

area s is now a 0/1 incidence matrix. Its value in the i-th row and s-th column is 1 if 

observation i is located in area s, and zero otherwise. Now N means the number of 

spots, while S means the number of areas with spatial effect.  

The S×S penalty matrix KKKKssss has the form of an adjacency matrix.    

In a penalized log-likelihood setting, the difference penalty can be expressed as 

                                               P9 � � F�GHF2δ9A                                                         �6� 
Where the penalty matrix is of the form KKKKssss = LLLLiiii

’’’’LLLLiiii.  

Then we can get a penalized log-likelihood function as follows 



                                 LJ � ) >δ logh �t� � + h �t�dt-
� B � P9                       �7� 

 

Here, to maximize the formula (7) means to maximize the posterior likelihood on 

the perspective of Bayes estimation and we can estimate structured parameters 

with spatial effect simultaneously. 

But some problem happens. We can’t obtain the marginal distribution to estimate 

the variance δ9A, unless the penalty matrix    KKKKssss is regular.  

As to this problem, Kneib and Fahrmeir proposed a procedure to estimate 

variances in a structured hazard regression model. That is, first to apply a Laplace 

approximation to the marginal log-likelihood (See Kneib and Fahrmeir10)), second to 

set up initial variance δLA  in the following likelihood function, then we get the 

parameters in hazard function, and finally to keep updating variance until 

parameters in hazard function become converge. That marginal log-likelihood 

function is represented as 

                                   L�δ9A� � � 12 log|δLA | � log|N| � P9                                �8� 
Where H H H H is a Fisher-information-matrix and then we can obtain the variance δ9A by 
maximizing the likelihood. 

 

3.23.23.23.2 ApplApplApplApplication ication ication ication geo additive geo additive geo additive geo additive to forestto forestto forestto forest    fire fire fire fire     

Geo additive hazard function is an ideal match for forest fire model. That is why it 

can express the landscape of widespread forest fire accuracy with considering the 

characteristics of each spot and interaction between spots. To illustrate the 

usefulness and flexibility of geo additive hazard function, we apply geo additive 

hazard function to forest fire in Sumatra. 

                                    h P�t� � exp�γ� 
 ) ρ2u ,-R2 
 f9�s ��2                                  �9� 
Let γ� and ρ2 be fixed parameters and f9�s � is a spatial effect in i-th spot. Then we 

include a time-varying covariate u ,-R2  in hazard function. Time-varying 

components enable us to update covariates by each time, and bring the forecast 

ability improved.  

 This model is not only used to judge the duration of forest fire(called Death modelDeath modelDeath modelDeath model) 

but also used to determine the time of occurrence of hotspot(called Birth modelBirth modelBirth modelBirth model). 

But we need some attention here. On this progressive process, Samples used to the 



Birth model are different from those of Death model, because the start time of the 

spell is different. For example in case of Birth model we use samples at T  , but in 
other case we can use samples at T 
 t  after the duration of forestfire finished. 
Besides we can consider the rebirth of fire in hotspots. Hotspots are defined by 

temperature on the ground. Therefore even if the temperature at each spot become 

lower than the standard level once, some spots are defined as hotspot again by the 

effect of interaction in spatial dimension. Now we modify the log-likelihood function 

reflected the rebirth of fire in hotspots.  

                                  LJ � ) ) >δ Ulogh U�t� � + h U�t�-
� B � P9                                   �10�U 

 

Let δ U is a dummy variable in addition to the effect of the occurrence of fire at q 

times. When we estimate the parameters in formula (10), we can use the data 

observed at time T U which shows the start time after (q-1)th spell of the fire. 

 

3.33.33.33.3 Estimation Estimation Estimation Estimation method for method for method for method for the number of hotspotsthe number of hotspotsthe number of hotspotsthe number of hotspots    

 This section shows you the procedure of estimation of the number of hotspots. The 

estimation method is followed by the survivor function and input data are based on 

observed data up to time t. Here, we employ a 3 steps method The procedure is as 

follows 

a) Estimation of the number of pre break-out spots 

The number of pre break-out spots at future time t 
 τ, ∆x-P�τ� is represented as 
∆x-P�τ� � )�S P

XYZ

 [\ �t� � S P�t 
 τ�� 
Where N-P is the number of pre break-out spots at time t, and S P�t� shows the 

survivor function for Birth model at time t. 

b) Estimation of the number of still fired spots  

The number of fired spots at future time t 
 τ, ∆x-]�τ� is represented as 
∆x-]�τ� � )�S ]�t� � S ]�t 
 τ��XŶ

 [\  

Where N-] is the number of spots still fired at time t, and S ]�t� shows the 

survivor function for Death model at time t. 

c) Estimation of the number of hotspots 

We can obtain the number of hotspots at future time t 
 τ by using formula a),b). 



The number of hotspots x-_` can be expressed as x-_` � x- 
 �∆x-P�τ� � ∆x-]�τ�� 
Here, x- is the number of hotspots at time t. 

4.4.4.4. Application Application Application Application to the data to the data to the data to the data in Sumatrain Sumatrain Sumatrain Sumatra    

4.14.14.14.1 Data baseData baseData baseData base    

 NOAA circulates the earth every one hundred minutes at an altitude of 850km. 

Data from NOAA can be received everyday at specific time. NOAA is equipped with 

a sensor called AVHRR (Advance Very High Resolution Radiometer). AVHRR 

detects the temperature at ground level by using mainly near infrared rays. Hot 

Spot is the terminology for a pixel, which has a higher temperature than the 

particular threshold captured by satellite digital data. The size of a pixel is 1.1 km 

times, 1.1 km and the threshold values applied for the infrared channel are 315K 

(42oC) for day capturing and 310K (37oC) for night capturing When cloud covers the 

land, Hot spots cannot be detected. Satellite picture shows us the distribution of the 

temperature on the ground. On the basis of satellite picture, hotspots are counted. 

 The data used here is published on web page in JICA, and we can obtain observed 

data in Sumatra Island, Malay, and Borneo Peninsula. But our research is focused 

on the East area in Sumatra, such as Riau state, Jambi state, and Lamnpung state 

because hotspots there mainly have caused the occurrence of Haze. Data base 

contains 22,002 times occurrence of hotspots in total at those 3 spots during July 

26th to October 19th. 

 

4.24.24.24.2 Result of estimationResult of estimationResult of estimationResult of estimation    

 The modeling framework is already explained at chapter 3, and we need to 

estimate mainly two kinds of parameters 1) for hazard regression, 2) for spatial 

effects. First, the Markov random field must be set up in order to estimate the 

parameters for spatial effects, then we can estimate all parameters simultaneously 

by using Maximum Likelihood Estimation. As mentioned in Introduction, the 

purpose of this paper is to build a predictable model including the spatially 

correlated effects in hotspots. This is a common way in spatial statistic to introduce 

the spatially correlated effects by assuming neighboring sites.  

 Now, we set up the field divided a target district into 100 meshes, and area s given 

a spatial effect to neighbors is determined following the number of occurrence of 

hotspots, in that sense, we distribute it by picking up 10 meshes in order as to the 

number of occurrence 1st, 11th, 21th,…,91th. Beside neighboring sites D  is defined 
as the area where mesh i is surrounded by 8 meshes. 



 TableTableTableTable----1, Table1, Table1, Table1, Table----2222    show the result of estimation on parameters for Birth and Death 

model on hotspots. Here we adopt the Weibull function to baseline hazard g� . 
Parameters in the table are all in hazard function except for parameters as to 

Weibull function and penalized variance, and the value of parameters provides us 

the strength of the relation to the event. For example, the parameter ρ2 in    TableTableTableTable----1111 

gets the plus value, this means that the longer the duration of the death in hotspots 

is, the more frequent hotspots occurred. But we can’t say definitely geo additive 

hazard function fit the phenomenon in Sumatra, because t-statistic and the 

likelihood value are low in both cases. However, we can determine, as a result, this 

model is effective. We can see from the average likelihood Birth model is more 

effective to apply than Death model and from the table spatial effects at each spot 

vary widely. By the way the index number for each area in the table doesn’t follow 

the frequency of hotspots, and make sure that the lower the value of parameter as 

to spatial effects is, the more frequently hotspots occur at each spot. That is why 

hotspots occurred in short term or in small scale are not counted because these 

hotspots never affect the event occurrence. 

 Let discuss the number of hotspots. FigureFigureFigureFigure----1, Figure1, Figure1, Figure1, Figure----2222 show the result of 1 and 2 

days forecast number of hotspots in addition to the real number of hotspots. We can 

see from FigureFigureFigureFigure----1111    the forecasted value at 1 day later can be enough applied to the 

real one, but the value at 2 days later in FigureFigureFigureFigure----2222 is not fit well. Besides forecasted 

values at 1 day later are precedent to the real ones, while values at 2 days later  

fall behind the real one. That means this model is effective to forecast only 1-day- 

later-hotspots. However, the purpose of this model is to be able to apply to 

Kobayashi’s paper, and his paper required us 12 hours forecasting. Therefore we 

can affirm this model is enough applicable and has a sufficient forecast ability. 

 

5.5.5.5. ConclusionConclusionConclusionConclusion    

 In this research, we attempt to develop the forecasting model for hotspots in 

Sumatra. The approach proved to be useful in a real data example on the number of 

hotspots in Sumatra Island and showed satisfactory statistical properties in a 

simulation study. For accurate forecasting, the accumulation of data base is 

required and some extension of the proposed method might be desirable. 

 

    

    

    



    

    

    

    

TableTableTableTable----1   Estimated result (Birth model)1   Estimated result (Birth model)1   Estimated result (Birth model)1   Estimated result (Birth model)    

    

  CSS estimateCSS estimateCSS estimateCSS estimate    tttt----statisticstatisticstatisticstatistic    

qqqq    0.0034 1.77 

ρρρρkkkk    0.022 2.72 

γγγγ0000    -0.764 -9.64 

ββββ1111    0.084 0.98 

ββββ2222    -0.192 -0.67 

ββββ3333    0.105 0.65 

ββββ4444    0.054 0.63 

ββββ5555    0.035 0.29 

ββββ6666    0.086 0.27 

ββββ7777    0.057 0.41 

ββββ8888    -0.144 -1.01 

ββββ9999    0.001 0.01 

ββββ10101010    -0.048 -0.34 

αααα    (Weibull function)(Weibull function)(Weibull function)(Weibull function)    0.362 22.92 

δδδδ    1.866 2.77 

Converge CSSConverge CSSConverge CSSConverge CSS    -2066.3 

Average CSSAverage CSSAverage CSSAverage CSS    -2.364 

sample numbersample numbersample numbersample number    874 

    

    

    

    

    

    

    

    

    

    

    



    

    

    

    

TableTableTableTable----2   Estimated result (Death model)2   Estimated result (Death model)2   Estimated result (Death model)2   Estimated result (Death model)    

    

  CSS estimateCSS estimateCSS estimateCSS estimate    tttt----statisticstatisticstatisticstatistic    

qqqq    0.012 2.35 

ρρρρkkkk    0.023 2.59 

γγγγ0000    -0.665 -8.35 

ββββ1111    -0.03 -0.23 

ββββ2222    0.34 1.02 

ββββ3333    -0.093 -0.52 

ββββ4444    -0.151 -1.7 

ββββ5555    0.003 0.05 

ββββ6666    -0.038 -0.15 

ββββ7777    -0.105 -0.76 

ββββ8888    0.137 0.75 

ββββ9999    -0.028 -0.23 

ββββ10101010    0.062 0.39 

αααα    (Weibull function)(Weibull function)(Weibull function)(Weibull function)    0.718 23.08 

δδδδ    1.212 0.76 

Converge CSSConverge CSSConverge CSSConverge CSS    -1413.3 

Average CSSAverage CSSAverage CSSAverage CSS    -1.717 

sample numbersample numbersample numbersample number    823 
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