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In practical management of an entire water distribution system, it is very important to define

optimal renewal time for pipelines. Reasons mainly include their deterioration, invisibility as an

underground system and the adverse impact on society in the case of leakage. Thus, this paper

proposes a mathematical model to satisfy this actual need. The model is developed based on

Weibull hazard function and least life-cycle cost estimation approach. This model enables us

to determine not only the deterioration rate of pipelines but also optimal renewal time. Attention

is further focused on finding optimal pipeline materials. Empirical study was conducted on the

dataset of a pipeline system in the city of Osaka, Japan.
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INTRODUCTION

Generally, in the field of asset management, the methodo-

logy in searching for the best possible maintenance and

repair strategy depends on deterioration model, life-cycle

cost estimation based on actual data from monitoring and

inspection. However, monitoring and inspection of pipe-

line systems face great difficulties since the system

is underground and therefore unseen. It is consequently

a challenge to observe the performance and condition

of pipelines, leading to difficulties in deterioration fore-

casting and life-cycle cost evaluation.

The Weibull hazard function is employed to address

the elapsed time of each pipeline measured from when it

was buried. The physical impact factors are in the form of

risk factors with a certain probability or range. Each

impact factor results in a particular risk level and is

integrated into the hazard function. Expected life-cycle

cost considers both direct replacement cost and indirect

social cost. The model is used for forecasting the

deterioration of pipelines and determining the optimal

renewal time that offers the minimum expected life-cycle

cost of each pipeline.

BACKGROUND

In the field of operation optimization, particularly with

industrial machinery systems, studies on optimal replace-

ment policies have been well documented (Heyman &

Sobel 1990). Among those, a large number of researches

focus on formulation of stochastic optimization models

to investigate the deterioration process, maintenance

and repair policies as well as cost evaluation (Heyman &

doi: 10.2166/aqua.2010.010

445 Practical Paper Q IWA Publishing 2010 Journal of Water Supply: Research and Technology—AQUA | 59.6–7 | 2010



Sobel 1990). However, many of the methods in deterioration

prediction were in the form of a simple approach using only

a binary condition state or homogeneous Poisson process,

which might not reflect the actual behaviour of pipeline

deterioration (Durango & Madanat 2002).

Further to thedevelopmentofhazardmodelswithoptimal

renewal time, a remarkable studybyAoki etal. (2005)using the

Weibull hazard model and Markov process has been pre-

sented (Eckles 1968; Aoki et al. 2005). In the same line of

development for hazard analysis, additionally, Tsuda et al.

(2005) proposed a Markov chain deterioration model, which

discusses the deterioration progress in a stochastic manner.

The Markov chain model can be estimated by a multi-staged

exponential hazard model developed by Tsuda et al. (2005).

The estimated Markov chain model can be applied for

the purpose of optimal renewal policies. Empirical testing

has been conducted successfully on a pavement system.

The purpose of this paper is to propose a practical

application on a pipeline system. Thus, a rigorous review of

the above-mentioned references has led us to select the most

practical mathematical model, which employs the Weibull

hazard model with binary condition state for the actual

dataset of the pipeline. Our methodology is presented below.

METHODS

Should an incident occur, especially in the megacities, tap

water will spill over the surface of the road causing social

damage. By substituting the old pipeline proactively, the

risk of such an incident occurring could be mitigated. This is

under the control and decision of the managers. As a matter

of course, the substitution of pipeline demands an increase

in the replacement cost. It is therefore important to

harmonize the trade-off situation by introducing the

optimal renewal interval with respect to the summation of

total social cost and renewal cost as a whole.

Deterioration process

In hazard analysis, the deterioration of an element is

subject to a stochastic process (Lancaster 1990). For a

pipeline, as previously mentioned, there are two condition

levels: E1, E2 in Figure 1. Level E1 reflects a healthy

condition, while level E2 denotes that the pipeline is in a

condition of leakage, damage or destruction. Whenever

the condition level E2 is detected, the damaged pipeline

will be replaced by a new one immediately. The renewal

is carried out at alternative time tk (k ¼ 0,1,2,…). In this

way, the next renewal time is denoted as t ¼ t0 þ t, where

t indicates the elapsed time. The life span of the pipeline

is expressed by a random variable z. The probability

distribution and probability density function of the failure

occurrence are F(z) and f(z), respectively. The domain of

the random variable z is [0,1]. The living probability

(hereafter known as survival probability) expressed by

survival function ~FðtÞ can be defined according to the

value of failure probability F(t) in the following equation:

~FðtÞ ¼ 12 FðtÞ ð1Þ

The probability, at which the pipeline performs well

until time t and breaks down for the first time during an

interval of t þ Dt can be regarded as the hazard rate and

expressed in the following equation:

liðtÞDt ¼
fðtÞDt
~FðtÞ

ð2Þ

where l(t) is the hazard function of the pipeline. In reality,

the breakdown probability depends largely on the elapsed

time of the pipeline since its construction. Thus, the hazard

function should take into account the working duration of

the pipelines. In other words, the memory of the system

should be inherited. The Weibull hazard function is satisfied

in addressing this process.

lðtÞ ¼ amtm21 ð3Þ

where a is the parameter expressing the arrival density of

the pipeline, and m is the acceleration or shape parameter.

Time

Condition state

E1

E2

E1: Normal operation/no major damage is found

E2: Major damage is found/require renewal

tk tk+1

k = 0,1,2…inspection times

^

t 0

Renewal

t (E1)
tk + t (zk) = tk+1

Figure 1 | The deterioration and decision framework.
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The probability density function f(t) and survival function

~FðtÞ in the form of the Weibull hazard function can be

further expressed in Equations (4) and (5).

fðtÞ ¼ amtm21 exp ð2atmÞ ð4Þ

~FðtÞ ¼ exp ð2atmÞ ð5Þ

Risk factors and estimation approach for Weibull

parameters

Risk factors

The corrosion process of the pipeline is affected by many

internal and external factors. As mentioned before, the

influential factors include material yield stress, length,

radius, pipe wall thickness, traffic load, thermal expansion

coefficient, internal fluid pressure and many others. These

factors should be considered as either deterministic or

random variables with specific mean and variance

depending on the availability of gathered data and infor-

mation. Evidently, these factors proportionally contribute to

the deterioration level with different variation (Ahammed &

Melchers 1997). It is, therefore, understandable to propose

an integrated risk factor k in the form of probability value.

Estimation of risk factor can be retrieved from several

physical models. Further expression of the hazard function

considering the risk factor k is as follows:

lðtÞ ¼ kamtm21 ð6Þ

The probability density function f(t) in Equation (4)

and survival function in Equation (5) ~FðtÞ are further

expressed as:

fðtÞ ¼ kamtm21 exp ð2katmÞ ð7Þ

~FðtÞ ¼ exp ð2katmÞ ð8Þ

A further notice in the case of using the risk factor is

that k should be used for respective records available in the

data set.

Covariates

In addition to the risk factor, another popular approach in

addressing the impacts and correlations of characteristic

variables (or covariates) is to consider location parameter a

in additive form of covariates.

a ¼
XM
i¼1

bixiði ¼ 1; … ;MÞ ð9Þ

where m is total number of covariates and the value of the

first covariate equals 1 as a constant value. Depending on

the availability of the database, numbers of covariates are

selected into the numerical calculation.

Estimation approach for Weibull parameter

It is assumed that the total number of recorded data is S,

which is relatively equivalent to the entire length of the

pipelines system. Each record refers particularly for s

(s ¼ 1,… ,S) unit of length (possibly in metres or kilometres).

This type of separation is often found for the convenience of

management of each city. Equations (4) and (5) are thus in

the following formulas:

fðtsÞ ¼ amtm21
s exp ð2atms Þ ð10Þ

~FðtsÞ ¼ exp ð2atms Þ ð11Þ

Deterioration of section s is supposed to be mutually

independent fromother parts of the pipelines system. For this

reason, the simultaneous probability density of the deterio-

ration is expressed in the following likelihood function:

Lða;m : tsÞ ¼
YS
s

�Fðtms Þ
� �ð12dsÞ fðtms Þ

� �ds

¼
YS
s

exp ð2atms Þ
� �ð12dsÞ amtm21

s exp ð2atms Þ
n ods

ð12Þ

in which ds is dummy variable receiving a value of 1 when

leakage was encountered and 0 otherwise. For ease of

mathematical manipulation, logarithm for both sides of

Equation (12) is preferred. Thus, rewriting Equation (12),

the log-likelihood function can be given by:

lnLða;m : tsÞ ¼
XS
s

ð12 dsÞð2atms Þ
�

þds lnaþ lnmþ ðm2 1Þ ln ts 2 atms
� ��

ð13Þ

In order to obtain the two parameters a and m,

the maximum likelihood estimation method is used.
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The estimator of parameter value u which maximizes the

logarithmic likelihood function (13) is given as û ¼ ðû1; û2Þ

(u1 ¼ a, u2 ¼ m) and must simultaneously satisfy the

following condition:

› lnLðJ; ûÞ

›ui
¼ 0; ði ¼ 1;2Þ ð14Þ

Furthermore, the estimated value
P
u of the asymptotic

covariance matrix of the parameter can be expressed as

follows:

X
ðûÞ ¼

› lnLðJ; uÞ

›u›u‘

� �21

ð15Þ

The optimal value of û ¼ ðû1; û2Þ are then estimated by

applying a numerical iterative procedure such as the

Newton method for simultaneous Equation (15) with two

dimensions. This study employs the Newton-Raphson

method. The statistical t-test is calculated by use of

covariance matrix value
P
u.

Formulation of the optimal renewal interval model

The occurrence of an incident results in a certain amount of

social cost, which is assumed to be a constant number, C.

The expected social cost EC(z) is estimated by use of the

predetermined interval of renewal z. Thus, its value is

followed in the probabilistic manner via the probability

density function f(t) defined in Equation (4). Over time,

counting from the time of pipe burial or previous renewal,

the expected social cost would be in the integral form as

expressed in the following equation:

ECðzÞ ¼
ðz

0
CfðtÞ exp ð2rtÞdt ð16Þ

The coefficient r is the instantaneous discounted rate of

money over time, while another constant amount of money

denoted as I is spent on renewal activities, which is subject

to either the occurrence of an incident at time t or the age of

the pipeline reaching time z. It is therefore important to

note that the renewal cost, when the age of the pipeline

becomes z, must take the survival probability ~FðtÞ into its

calculation. Consequently, the present discounted cost of

the next pre-determined renewal time EL(z) can be

expressed in the following form:

ELðzÞ ¼
ðz

0
If ðtÞ exp ð2rtÞdtþ ~FðzÞI exp ð2rzÞ ð17Þ

The expected life-cycle cost (LCC) after the next renewal

time is evaluated as the net present value of social costs, and

renewal costs. As the social and renewal costs are fixed

values, the expected LCC alters to be equal for every renewal

time. In other words, the expected LCC at the next renewal

time is equal to the expected LCC estimated at the present

renewal. The expected LCC, denoted as J(0: z), can be

regulated through the regression estimation shown in

Equation (18).

Jð0 : zÞ ¼
ðz

0
fðtÞ{cþ I þ Jð0 : zÞ} exp ð2rtÞdt

þ ~FðzÞ{I þ Jð0 : zÞ} exp ð2rzÞ ð18Þ

The optimal value function F(0) can be expressed as the

minimum expected LCC evaluated at the initial time:

Fð0Þ ¼
z

min{ Jð0 : zÞ} ð19Þ

The estimation for the optimal interval z * from Equation

(19) can be handled.

Empirical study

Overview of empirical study

The water distribution network of Osaka city is approxi-

mately 5,000km in length. The entire water distribution

system comprises four distinct types, belonging to classes A,

C, F and FL. The three types C, F and FL are the old cast iron

types, which were buried 40 years or more ago. At present,

those pipes (C, F andFL) are no longermanufactured. TypeA

is ductile cast iron with innovative material composition.

For empirical analysis, typeA is assumed to be the best type of

pipe for replacement of the old types C, F and FL.

At the Osaka Municipal Waterworks Bureau, a pipeline

information management system (a mapping system) has

been utilized from 1999. The pipeline information such as

the completion drawing in form to link to the pipeline
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drawing of the city in pipe materials, coupling shape,

a diameter, installation annual and an accident history are

managed. Based on this information, the duration of

survival before the pipeline is damaged is expressed using

a Weibull hazard model. Firstly, about the social loss, follow

consideration about the exchange priority of the pipeline of

Taniguchi et al. (2004). Next, the exchange expense of the

pipeline assumed it the results value of past exchange

expense. In addition, by the following empirical study,

pipeline equal to or less than pipe diameter d ¼ 300 which

information is recorded in pipeline information manage-

ment system becomes an analysis object.

Estimation results

The parameters a and m of the embedded hazard function

are estimated by the maximum likelihood method with

historical sectional records for each type of pipeline. Values

of a and m are then verified with significant degree of t-test

values. Table 1 presents the results of estimation for two

comparative cases. In the first case, explanation variables

were excluded from the estimation. In the second case, the

effective length as a characteristic variable was considered

in the estimation. Regarding the second case, as presented

in Table 1, unknown parameter b1 is a constant term with a

value of 1 for characteristic variable x1.

Unknown parameter b2 refers to the effective length of

the pipeline system. In this study, other characteristic

variables, which reflect the influence of outer and inner

rust, soil unit weight, top traffic volume and so on, were

neglected because of their small impact or because data was

unavailable. The value in parentheses in Table 1 refers to
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Figure 2 | Survival probability: pipeline type C.
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Figure 3 | Survival probability: pipeline type F.
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Figure 4 | Survival probability: pipeline type FL.

Table 1 | Estimation results for parameters of Weibull functions: types of pipeline

Without covariate With covariate

Pipeline

type a m b1 b2 m

C 1.11 £ 1025 2.496 2.51 £ 1026 1.49 £ 1024 2.484

(28.528) (30.275) (6.402) (19.666) (34.909)

5,053.724 4,031.92

F 2.55 £ 1025 2.293 4.92 £ 1026 3.25 £ 1024 2.288

(46.256) (48.825) (9.337) (32.944) (56.613)

13,523.84 11,154.64

FL 1.81 £ 1025 2.4 6.73 £ 1026 1.22 £ 1024 2.391

(14.537) (15.432) (4.375) (7.365) (17.79)

1,331.98 1,114.08

A 8.87 £ 1025 1.907 8.27 £ 1026 4.18 £ 1024 2.144

(29.416) (31.38) (10.117) (26.642) (35.865)

6,654.54 5,588.27

Note: Figures in parenthesis are t-test values; the figures in the third row for each type are

the AIC values.
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the value of the statistical t-test. It is realized that, from the

t-test value, the effective length of pipeline cannot be denied

to have substantial effects on the deterioration process.

This conclusion is further explained by comparison of AIC

(Akaike Information Criteria; Akaike 1974) values. AIC

values of the case considering effective length of pipeline are

lower than the case without that covariate in the estimation.

AIC ¼ 22* ln ðlikelihoodÞ þ 2*K ð20Þ

However, as can be proved from Figures 2, 3 and 4, the

differences in the decrease of survival probability over time

are not significant for both cases of pipeline types C, F and

FL. A considerable variation between two survival prob-

ability curves is realized only for pipeline type A shown in

Figure 5.

Since the largest sampling population has been accumu-

lated for pipeline type A (more than 15,000 data points), it

can be concluded that the impact of effective pipeline length

has a tendency to increase with the larger size of sampling

population.

A comparison of the survival probability curve of each

pipeline type is drawn in Figure 6. As can be understood

from this figure, pipeline types C and FL show a more rapid

decrease than pipeline type F. However, all three of the

older pipeline types have a 0.5 probability of being broken

after 80 years in operation. On the other hand, pipeline type

A has much longer life expectancy than the others.

The investigation into optimal renewal time and

expected life-cycle cost is carried out in the second phase

after obtaining the values for the parameters of the Weibull

hazard function and the associated cost parameters.

The optimal duration z * is empirically analysed. It should

be recognized that the optimal renewal duration is in the

range of 50 to 60 years for the older types of pipeline and

about 80 years for type A.

CONCLUSIONS

Water pipeline systems are underground, and it is difficult

to detect the deterioration situation by conventional

inspection. Following a leakage incident, a great amount

of social expense occurs because of adverse impacts on

road traffic. Therefore, it becomes necessary to proactively

replace the pipelines in order to prevent such losses. Thus,

in this study, we propose a methodology in which the

deterioration process of the pipeline was expressed based

on the data such as leakage incidents using the Weibull

hazard model. Furthermore, we formulate a mechanism

for life-cycle cost evaluation. Thus, the model enables the

estimation not only for deterioration speed of pipelines but

also for optimal renewal time with respect to least life-

cycle cost analysis. The empirical study was conducted

on the dataset for the water distribution system in Osaka

City. From the standpoint of optimal renewal, this model

can be extended to apply to other systems with similar

characteristics.
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